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We extend th&-matrix approach to light scattering by spherical particles to some simple cases in which the
scatterers are optically anisotropic. Specifically, we consider cases in which the spherical particles include
radially and uniformly anisotropic layers. We find that in both casesTtneatrix theory can be formulated
using a modifiedl-matrix ansatz with suitably defined modes. In a uniformly anisotropic medium we derive
these modes by relating the wave packet representation and expansions of electromagnetic field over spherical
harmonics. The resulting wave functions are deformed spherical harmonics that represent solutions of the
Maxwell equations. We present preliminary results of numerical calculations of the scattering by spherical
droplets. We concentrate on cases in which the scattering is due only to the local optical anisotropy within the
scatterer. For radial anisotropy we find that nonmonotonic dependence of the scattering cross section on the
degree of anisotropy can occur in a regime to which both the Rayleigh and semiclassical theories are inappli-
cable. For uniform anisotropy the cross section is strongly dependent on the angle between the incident light
and the optical axis, and for larger droplets this dependence is honmonotonic.
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[. INTRODUCTION The scattering amplitudes can be described using Green’s
function technique$12], but these involve solving complex
The problem of light scattering by particles of one me-integral equations over infinite domains. Under some cir-
dium embedded in another has a long history, dating backumstances one can approximate the kernels of these equa-
almost a century to the classical exact solution by Mig  tions either as the incident wave or as a semiclassical per-
The Mie solution applies to scattering by uniform sphericalturbed wave, leading to the well-known Rayleigh-G&R&)
particles with isotropic dielectric properties. More recently,@nd anomalous diffraction approximatio8DA). These
this strategy has been successfully applied to ellipsoidal pafl@ve been used byufner and co-workers to examine the

ticles and some circumstances in which the dielectric tensdfoblems we consider in this papgt3,14. However, the
is anisotropid 2—§] approximations are only valid over certain wavelength and

There are a large number of physical contexts in which itoptical contrast regimes. The century-old Mie strategy and

is useful to understand light scattering by impuritjéd A its modernT-matrix extensions yield exact solutions, but un-
particular example of recent interest concerns liquid crystal ortunately this approach does not work in every case. Fi-

devices. There are now a number of systems in which liqui ally, one can of course use real space finite element ap-
: Yy UG 0aches. However, in order to be efficient and accurate,

crystal droplets are suspended in a polymer matrix—the SGnese have to be very computationally intensive. In particu-
called polymer dispersed liquid crytdPDLC) systems—or 3¢ without significant increase in computational power, this
the inverse system, involving colloids now with a nematictyne of approach will probably not be adequate to discuss
liquid crystal solvent. These inverse systems are commonlycattering in complex many-particle systems. For a more
known as filled nematicg10,11. comprehensive review we refer the reader to Chap. 2 in Ref.
In such systems one needs to calculate light scattering by 5] and references therein.
composite anisotropic particles embedded in an isotropic or The analysis of a Mie-type theory uses a systematic ex-
an anisotropic matrix. The model scatterer usually consists gbansion of the electromagnetic field over vector spherical
a small central isotropic particléthe core”), coated by a harmonics. The specific form of the expansions is known as
much larger region in which the optical tensor is anisotropicthe T-matrix ansatz16]. The T-matrix theory is known to be
This is equivalent to examining light scattering by a compos-a computationally efficient approach to study light scattering
ite particle consisting of the central core plus a surroundindgyy nonspherical optically isotropic particl¢s5]. One may
liquid crystalline layer. thus expect that &-matrix approach to geometrically spheri-
A number of approaches are available to study light scateal but optically nonspherical scatterers can at the very least
tering by complex objects. A brief summary is as follows. enable scattering properties to be evaluated when the ap-
proximate methods cannot be applied. In addition, whereas
the region of validity of the approximate methods such as

*Email address: kisel@elit.chernigov.ua RG and ADA in the case of isotropic scatterers is reasonably
"Email address: reshet@iop.kiev.ua well understood, in the case of anisotropic scatterers this
*Email address: t.j.sluckin@maths.soton.ac.uk problem has not been studied in any detail.
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FIG. 1. Distributions of optical axis in the anisotropic layer around a spherical particle for radial and uniform structures. The angle of
incidenced, . is the angle between the direction of incidethcand the direction of the uniform anisotropy. The polarization vee}(ﬁmc)
is normal to the plane of the picturq,(RinC)xRincxi. Inside the uniformly anisotropic layer plane waves linearly polarized adp(fgnc)
represent ordinary waves.

Recently, in Refs[7,8] we have studied the scattering electric constante;;=€d; and magnetic permeability;;
problem for the optical axis distributions of the form,:F = ud;j . The scattering particle consists of an inner isotropic

+nyd+ ”MAD- By using separation of variables and expan-core of radiusR,, surrounded by an anisotropic annular layer

sions over vector spherical harmonics, we have develope@f thicknessd=R;—R,.

the generalized Mie theory as an extension of Theatrix Within the inner core of the scatterer the dielectric tensor

ansatz[16]. This theory combines computational efficiency e, and the magnetic permittivity, take the valuese;;

of the T-matrix approa_ch and weI.I defined tran§f0rmat|on: €28, , mij= 28 . The dielectric tensor within the annu-

properties of the spherical harmonics under rotations. In thigy jayer is locally uniaxial. The optical axis distribution is

paper we discuss this theory in more detail and explain how, .. A . .

this approach can be extended to the case of uniformly arfiefined by the \{egtor field. (Carets will denote unit vec-

isotropic spherical particles. tors) j’hen ) within  the annular Iayerei,-(r)erl&ij
The layout of the paper is as follows. General discussiont Ae;(n(r)®@n(r));; and mj; = w1 . The unit vectom cor-

of the model is given in Sec. Il. Then in Sec. Il we outline responds to a liquid crystal director for material within the

the T-matrix formalism for the isotropic medium in the form annular region withe;=¢, andAe;= €€ .

suitable for subsequent generalization. In Sec. IV, as the sim- e shall suppose that the director field can be written in

plest case to start from, we consider how Thmatrix ansatz . A A A A -

applies for the radially anisotropic layer. We find that the®N€ ©f the following forms:in=z or n=r, where r

structure of electromagnetic modes in the layer requires™ (Sin@cosé.singsing,cosd) is the unit radial vectorip

modification of the standar@-matrix ansatz. In Sec. V we and@ are Euler angles of the unit vectarx, y, andz are the

describe the method to put the scattering problem into thenit vectors directed along the corresponding coordinate

language ofT-matrix by linking the representations of plane gxes.

wave packets and of spherical harmonics. For uniformly an- |n Fig. 1 we have shown these director distributions. Fig-

isotropic scatterer we define generalized spherical harmoniGge 1(a) shows the radialand spherically symmetricdirec-

and show that the effect of angular momentum mixing can by gistribution. Light scattering from the radially anisotropic

treated efficiently. In Sec. VI we make brief comments on the, ,, /1ar layer was first studied long ago by Roth and Digman

numerical strategy and present some numerical results for tf[% ; - ;
X oo~ o ing th hni normally known as D ntials.
total scattering cross section in the limiting case of a droplet ] using the technique normally known as Debye potentials

i.e., when the radius of the isotropic core of the scatterer is'n this case the spherical symmetry of the problem plays an

negligible. Anisotropy effects are our primary concern and|mportant_role in rendering the Maxwell eq_uations_ soluble.
for this reason we pay special attention to the special case fdp an earlier papef8] we have recovered .th|s so_lut|on asa
which the ordinary wave refractive index and the refractives'pec'_éII case Of. a more general set .Of anisotropies. A crucial
index of the material are matched. In addition, we emphasiz&t€P in the derivation of this result involves writing the so-
the importance of anisotropy effects by making comparisorf@lled modifiedT-matrix ansatz. _ _ o
between angular distributions of scattered wave intensities We show in Fig. 1b) the case in which the optical axis is
for radially anisotropic layers and effective isotropic layersdirected along the axis and is uniformly distributed within
of the same scattering efficiency. Finally, in Sec. VII wethe annular layer. The case where the scatterer is a long
present our results and make some concluding remarks. Deylinder parallel ton presents no difficulties and can be
tails on some technical results are relegated to Appendixegeated in cylindrical coordinate systdti7]. Scattering from
A-C. spherical uniformly anisotropic particles is not exactly
soluble[17] and has been studied by using the Rayleigh-
Gans method and the anomalous diffraction approximation
We consider scattering by a spherical particle of rays in Refs.[13,14].
embedded in a uniform isotropic dielectric medium with di- A simple limit of the physical situations we consider puts

Il. MODEL
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€= €,= €y, With u= u;= u,. The first condition allows us to In the simplest case of an isotropic medium we can use
concentrate on situations in which the scattering is governedeparation of variables to derive the coefficient functions that
by the anisotropic part of the dielectric properties. This dis-can be expressed in terms of spherical Bessel functions,
tinguishes our case from other studies of scattering byj(x)=[7r/(2x)]1’2Jj+1,2(x), and spherical Hankel functions
spheres, in which the isotropic optical contrast dominates21], h{")(x) =[ m/(2x)]*?H{}); (x), and their derivatives as
However, there is also a motivation for this hypothesis infollows:

terms of liquid crystal device physics, and we shall discuss

this at greater length in a subsequent paper. However, the (my, = Smy,a M~ @, =

result of the hypothesis is that the scattering by our model Eim= @jmMjm (p.1) + BimMim'(p,1) = ﬁ[“imMjm(p’r)
spheres disappears in the limit of zero anisotropy. In addi- A

tion, for a uniformly anisotropic layer we shall show explic- +ﬂij}§2(p,r)], (39

itly that the scattering process does not involve yheom-

ponent of the incoming plane wave provided the refractive

~ o e .~ n .
indicesn andn, are matched. Him=ajmM{m(p,1) + BimM (W (p,r) + ;[aij,-(ﬁ)(P,f)
lll. T-MATRIX APPROACH IN ISOTROPIC MEDIUM +BimM {2 (p,1)], (3b)

A. T-matrix ansatz ~ ~ . .
whereay, , ajm, Bjm, andB;, are integration constants; the
In this subsection we remind the reader about the relation- . (@) 1 (a) :

Nector functionsMj/ andM ;7 are given by

ship between Maxwell’'s equations in the region of a scatterer
and the formulation of scattering properties in terms of the
matrix [9,12]. Our formulation is slightly nonstandard. Some
technical details, which can be omitted at first reading, have __
been relegated to the appendiXe®ore details can be found M(©(p,))=Dj(p)YE(F)+ Vidi +1)j-( YO
in Refs.[18,19). jmiP itP) Vim p P TmiT)

M (p,1)=];(p) YD),

We shall need to write the Maxwell equations for a har- (4a)
monic electromagnetic wavdtime-dependent factor is ~ . .
exp{—iwt}) in the form: M (p.,1)=hM(p)Y{R(r),
—ini[pik] P VXE=H, (18 ViGi+1)
o - . NiGFD .
M2 (p,r)=Dh{M(p)Y{A(F)+ ———h{M(p) Y1),

iwilniki]"LVXH=E+u(n-E)n, (1b) (4b)

where n;= Jeju; are refractive indexes for the regions, \whereDf(x)=x"1(d/dx)[xf(x)] and p=kr.
where R,<r<<R; (i=1) and r<R, (i=2); ki=nikysc There are two cases of E(Ba) that are of particular in-
(kyac=w/c=2m/\ is the free-space wave numbeWe de-  terest. They correspond to the incoming incident wave

fine theanisotropy parameteasu; =Ae; /€, (inthe annular g, - H, .} and the outgoing scattered wa{q.q,Hsca':
layen. Then inside the isotropic cora,=0. Finally, for

brevity, in the region outside the scatterer R,, the index 6y (ine) xa(m)_ M~ (inc) yp(8)

will be suppressed, giving=nk,,. andu=0. Eim "= ajm Mjm' = 5 ajm” Mjm,
The electromagnetic field can always be expanded using

the vector spherical harmonic basisY; sjm(¢,0)

~ . ~ n .
=Yj:5m(F) (6=0,£1) [20], as follows: HinY =a(n? M + ;afh?c) M{e, (5)
E=D E,= (@ pyylapy 2 - P s
sz im JEm p]m( ) ]m( ) (2a) El(;ca)zﬁj(rsnca)'v',(m)_—,Bj(smca)Mfﬁq)'
a=0,e,m n
~ ~ ~ n ~
H=2 Hin= 2 qiROYREO), (2b) HEEI =B MR+ Ao iR, ©)
a=0,e,m

whereY{®, Y(9  andY(2) are magnetic, electric, and lon- Now th(:nlcr;comligg incident wave is characterized by ampli-

gitudinal harmonics, respectively, defined by HA4) (a  tUdeSajm™, ajn and the scattered outgoing waves are
number of relations for the vector spherical harmonics usegimilarly characterized by amplitudes{s’®, Bis. Our
throughout this paper are considered in Appendjx Bhe  task is now to relat¢a} and{A}.

electric field is now completely described by the coefficients In this regime, the polarization vector of a transverse
{p{x)(r)} and similarly the magnetic field is now described plane wave incident in the direction specified by an unit
by {a{&(r)} with a={o0,e,m}. vectorki,. is
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. A . In simpler scattering processes, by contrast, such angular
E(n9 = Z E("e,(Kinc)- (7)  momentum mixing does not take place. Many quantum scat-
vet tering processes and classical Mie scattering belong to this

We show in Eq(A13) the coefficientg @} of the expansion C&tegory. Itis seen from Fig(d that radial anisotropy keeps
(5) takes the form: mtat_:t spherical symmetry of the _s_catterer. The radially aniso-
tropic annular layer thus exemplifies a scatterer that does not

(ino) (in6) =(ine)_: o (inc) mix gngular moment_a. Th& matrix of a spherically sym-
Ajm = 2 Ajm: o By =1 Oljv_zl Din(Kinc) vE3", metric scatterer is diagonal over the angular momenta and

a=X,y ’
a( C)_— E a/J( ’C) E( C)— n/ u a/j E I )] (k )E( C)

a=xy B. Scattering amplitude matrix

(®) We have seen that the relation between the scattered wave

1 . 2 i ' _ () and the incident plane wav®) is linear. In the far field
vyhereaj Hem(2) +_1)] + Doy '? the WigneD funp region (p>1), where the asymptotic behavior of the scat-
tion [20,22 and the basis vectom. ; (ki) are perpendicu- tered outgoing wave is given by

lar to ki, and defined by EqA2).

Thus outside the scatterer the electromagnetic field is a iHlE(sca)Nﬁ S ot (113
sum of the transverse plane wave incident in the direction m p S, ™
specified by a unit vectokiy. (Bin=Bin"=0) and the
outgoing wave witha(y*?="2{*¥=0 as required by the B _jelr
Sommerfeld radiation condition. i u/n Hj(;ca)”—p <, v im, (11b

So long as the scattering problem is linear, the coefficients
B3 and B5¢? can be written as linear combinations of

o) and2{Imo) fu im=Nj (&, B )DLt (Kscaley(Ksca),
(sca) [T“ (inc) M T2 ~ (inc) withe,=(—v,—i)/\2 andN; = /(2j + 1)/4m, the scattering
i = im irmr Ko T T b Oy |y . . n~ ~ .
m (e MMM e amplitude matrixA(Kgca,Kinc), Which relatesEg., and the
polarization vector of the incident wau&"® is defined in
- n_, (inc) | 22 ~ (in¢) the following way[9,12,16:
,81(3‘166):’2, ;ij,j'm’ aj,m,-l-ij'j,m, j’m’ . (9)
Jm ip
. e P ,
(sca) _ /* _ - . (inc)
These formulas define the elements of fenatrix in the v — (6 (Ksca),Escd = P A, (KscaKind) B,

most general case. (12)
In general, the outgoing wave with angular momentum

index | arises from ingoing waves of all other indicgs In o . .~ A

such cases we say that the scattering process mixes angu¥§pere an asterisk indicates complex conjugatibg,,=r

momentd 16]. The light scattering from the uniformly aniso- ande. ;(Ksco) =+ (9=ig@)/\2.

tropic scatterer, depicted in Fig(t), provides an example of ~ Equations(6), (118 and the vector spherical harmonic

such a scattering process. In this case the cylindrical symméelations Eqs(A8) can now be combined to yield the expres-

try of the optical axis distribution causes tfiematrix to be  sion for the scattering amplitude matrix in terms of the

diagonal over azimuthal indicesn and m’: T?m“jj,m, matrix:
= Sy T;‘J.”,: - Then we can conveniently rewrite the rela- i
tion (9) using matrix notations: A, (KscasKine) = — 7 [(2j+1)(2j’
jm jrmr
_ (inc) ; ~ o -
jﬁfa)_zl Tij’; m&m (10) +1)]1/2Dlmf/(ksca)D:nfVl(kinc)
j
11 : 12
where XV T, jr =10 Tim, e
: 21 22
Tll le +iv' ij,j’m’+ij,j’m’]' (13)
jitmo Tgjpsm
T" rem— f
nem ( lel, m 12]2, m) All scattering properties of the system can be computed

from the elements of the scattering amplitude matrix. In Eq.
Bj(rsnca) (13) we see that this can be defined in terms of the elements
. of the T matrix defined in Eq(9). Thus computation of these

(inc)
. jm
aJ(mC):( ~ ) and Bid=
matrix elements is of crucial importance.

uin al-(mc)

pin Bied
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C. Scattering efficiency where i is the angle between the polarization vector of the
In order to find the total scattering cross secton,we Incident wave and the scattering plane.
need to calculate the flux of Poynting vector of the scattered M S€C. VI A we shall use the intensity(fsca),
Wav.e.S<S°a)=c/(81-r)Re(Esca>< Hicd through a sphere of isea Osca) =[i|( sca) +i. (0sca) 112, (20)
sufficiently large radius and divide the result [§/")|.
Using the expressiond.1) and the orthogonality relation and the factor characterizing the degree of depolarization
(A9), we can deduce the result for the total scattering crosg¢depolarization factorP e 0sca),

section: P oo =1 li1(Osca) =i, (Osca)l
Csca:kizl'ilz [ﬁ]{sca)]T _sca), (14) dept e iH(esca)"HL(asca)
jm

inc m jm

21

as quantities characterizing angular distribution and polariza-

where ==, .1|EI"9|2 and the superscript T indicates ftion of the scattered wave[23]. Note that avergging _
Hermitian conjugation. We can now relate the scatteringscafsca) OVer the scattering angle gives the scattering effi-
cross section and the elements of fhenatrix. More pre- ~ Cl€NCy:
cisely, we consider the scattering efficier@yhat is the ratio w
of Csco and area of the composite partice= 7R?. Q:f Isca Osca)SiNOscalOsca-

Equations(8), (10), and (14) can now be combined to 0
yield the expression for the scattering efficiency of a uni-

formly anisotropic scatterer in the following form: IV. SCATTERING FROM RADIALLY ANISOTROPIC
LAYER
Q=line > QupES"EGI ™, (15 In Sec. lll A we started from the general expansion for
By electromagnetic field over the vector spherical harmonics
(2). Then the fields in isotropic medium were expressed in
(a) N (@) i
KR,)?m Q, 5= (scd) 11 p(scd) 16 terms of the modesM|/ and M| [see Eq.(4)]. This ex-
(KR Qup ]zm [Bfm’ 2l ﬁfm’“ (18) pression is known as thE matrix ansat415,16.

We shall write down the results for electromagnetic field
(sca) :2 T, ano 17 within the radially ani_sotro.pic layer as t.he.y are given in Ref.
im; = i m%rm; « [8]. These can be written in the form similar to thematrix
ansatz:
So, we have the scattering efficiency ten&qy;, which is, B s o
in general, nondiagonal and depend on incident wave angles.  Ejn= a;mP + BimP\m — = (ajmPie + BimP\m).
For a spherically symmetric scatterer this tensor is diago- n

. o . . 22
nal and independent df;,.. In this case thel matrix is (223
diagonal and from Egg15)—(17) we have the known result - - o~ n ~
[16]: Him=aimQf + BinQjm + - (aimQin + BimQy)-
o 2 (22b
Qum 223 S 2+ (9
ap k2R2 /=1 mi1 J I For radial anisotropy the modes that enter Eg8) are given
by
In order to characterize angular distribution of scattered (M) _ g (M) °
light intensity let us suppose that the incident wave is lin- Pim =Mjm (p1.1), (233
early polarized arld is proE)agating along thaxis, Ki,.= z. Q](;):Mj(gg(pl,f) , (23b
The wave vectork;,. andks., define the scattering plane. R
For diagonall matrix Egs.(12) and(13) give the amplitudes Q,(m)=j](p1) Y]-(m)(r), (239
of the scattered wave components that are paralﬂéilc@) © . (@5 L v 1 ()2
and normal E{**) to the scattering plane: Pim=Djj(p0) Yim(N+[i(G+1)]"p1 " ji(p1) ij((rz)éd)
|E§(sca)|2( Osca) = lincl H( Hsca)COSZ(//, (1939 .
wherej(j+1)=j(j+1)/(1+u,) andp;=k;r.
|ES?12(Osca) = linci | (Osca)sintep, (19b In the following section we shall find that the fields in
_ R uniformly anisotropic medium can also be written in the
i, L =liaxi_qf? (199  form (22). However, the expressions for the normal modes in
this case will differ from those of Eq$23). In both cases the
i 9sca):(kR1)7l$ (j+1/2)di . ( '9sca)[leli szz]’ modes represent solutions of Maxwell's equations and turn

into the isotropic medium modeg) in the limit of small
(190 anisotropy parameteg— 0.
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The radial anisotropy harmoni¢22) do not involve an-

gular momentum mixing and as such they only have contri-
butions proportional to vector spherical harmonics with an-

gular momentum numbers givegnand m. The important

uniformly anisotropic layer this is no longer true.
The fields inside the isotropic core of the particle simi-
larly also involve no angular momentum mixing:

B9 = afg M- ZZa (M), (249
~ n,
H{S ="a{?) M{T -+ P alaImME, (24b)

WhereMJ(,eT;m) =M J(ﬁ;m)(pz 1) and p,=Kk,r.

PHYSICAL REVIEW E65 056609

p{(R+0)=p{W (R —0),

q@DR+0)=q{@(R-0), i=12. (25

For the radially anisotropic distribution different angular mo-
fhentum are decoupled. We have shown elsewhere that the
matrix can be computed in the closed fof&i, and here we
shall comment on this calculatigifior more details see Ref.
[18]).

Expressions fofp{s),q{?)} in the ambient medium have
been given implicitly in Eqs(5) and(6). Similar expressions
in the annular layer have been given by E@2) and (23).
Finally, the analogous expressions inside the isotropic core
have been given in Eq24).

In order to determine th& matrix we shall insert these
expressions into the boundary conditiof5). This will
yield a system of eight linear algebraic equations for the ten
quantities:a{h?, afh?, A BEDai Bin, ajm,
Bim. a2, and a3 . After eliminating all internal variables

We now pass on to the calculation of the scattering cros@e shall be left with two equations in the four unknowns:

section using th&-matrix method. The formulas presented

ap®, a9, B3, and Bi? . These equations will de-

in this subsection form a key element in the input to thisfine theT matrix.

calculation.

A. T matrix: radial anisotropy

In order to calculate the elements Dimatrix, we need to

use continuity of the tangential components of the electric

and magnetic fields as boundary conditiong &R, andr
=R;. Equivalently, the functionsa},ﬁ?z(Y}ﬁ?*-E);, and
qid=(Y{d*-H);, a=m,e, must be continuous at each
boundary:

|
ij(py) h{“(p1)
—1n; —1nR(1)
Nimy "Djj(p1) Nipmy "Dhi™(pg)
Ri(r)= 0 0
0 0

In order to carry out this procedure efficiently we com-
bine Egs.(2) and(22) by using the compact matrix notation
for the components inside the anisotropic layer:

pim(r)
qisr)
qim(r)
pim(r)

ajm
. IBjm
C!jm

Bjm

(26)
where

0 0
0 0
he(p)

ii(p1) (27

_ . — 1
— N Dij(py)  —pany DR (py)

We can now apply the boundary conditions at the dieIecwhereDf(x)|r=RiE[f(x)]i’ , f(x)|r=RiE[f(x)]i , and

tric discontinuities on the inside and outside of the aniso-
tropic layer and solve the system of linear algebraic equa-
tions. This yields the standard general form for the relation
between the amplitudes of the incoming and outgoing waves
(9), with the following explicit expressions for the elements
of the T matrix:

. Celiiplimn/uelije)];
" onlpei [h(p)1i - [hP ()1,

Colij(p) it rine [jj(p)];
T122=_ 2~[JJ(P()1])1 M, ~1[J,((ll)7)]1 (@28
un e [hD(p) 13+, [hD(p)];
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We note that in this result the off-diagonal elements of theterms of spherical coordinate basis functions are given by
T matrix vanish T12 T21 0. This result is quite general for Egs.(3) and (4). An electromagnetic wave can alternatively
spherically symmetnc scatterers, and physically means thdte written as a superposition of plane waves:
there is no coupling between transverse electric and trans- L R R . .
verse magnetic waves. Equivalently there is no depolariza- E=(explipk-r)[E«(k) (k) +E,(k)e,(k)])i, (303
tion scattering in this scatterer. Mathematically, the result
follows because the matrig27) is block diagonal. n A N N N N
H=—(explip K- r)[Ex(kK)ey(k) —Ey(kK)e(Kk) )k,
V. SCATTERING FROM UNIFORMLY ANISOTROPIC H (30b)

LAYER

By contrast with the case of the radially anisotropic scat- where(f)i=J57d [ gsin 6,d6 f. _ _ .
terer considered in the preceding section, the electromagnetic In Appendix A we derive expressions connecting the iso-
field inside the uniformly anisotropic annular layer can easily"OPIC Spherical modegta) and the vector plane waves oc-
be described in terms of plane waves. Unfortunately th|sCurrlng in the superpositio(80):

does not render the scattering problem soluble. The difficulty

k-

lies in satisfying the boundary conditions for a spherical scat- M{R(p.1) = 7;(e"" r)[D(y) *(k)ey(k)

terer using the plane wave solutions of the Maxwell equa- .

fone, TR q ~iD{)* (K)gy(K)] )z, (319
The starting point of thél-matrix approach to this case @ BB () % 1 .

involves finding a representation of the electromagnetic M{R(p.r)= (P DG * (k)e(k)

wave analogous to the generaliz8dmatrix ansatz(22). ) % Crm L

However, for symmetry reasons, the structure of the modes +Djm “(K)e,(K)] )k, (31b

representing the fields in the uniformly anisotropic medium L B i
differs from that in the spherically symmetric isotrogar a ~ Wherey;=i"!(4m) ?Jm(2j+1) and
radially anisotropic geometry. In particular, the lack of

spherical symmetry implies that the angular momentum D (k)=e" "™ 4d(¥)(6,) =D}, _,(K)
numberj is no longer a good quantum number. However, the i D) L
cylindrical symmetry still guarantees conservation of the azi- *Dp a(k),  Djn(k)=Dp, o(k). (32

muthal numbem. . - o -
The procedure is as follows. In Sec. VA we provide These relations can be explicitly verified by substituting

methods of defining modes in a uniformly anisotropic mate-N€ €xpansiongAl13) into the right-hand sides of Eqe31).
rial. These modes aréa) solutions of the Maxwell's equa- The linear combinations of the moded () (p,r) and
tions and(b) deformations of the isotropic spherical harmon- M(e)(p r) which enter the electromagnetic field harmonics

ics. The latter condition means that the isotropic modes qus) can now be expressed as a superposition of plane waves:
(4) are recovered in the weak anisotropy limit~0. Then

in Sec. V B, we shall use these “quasispherical” wave func- (m) © (D09
tions to derive equations that enable the elementsrofitrix ajmMjm’ = _0‘1 Mijm= (e V[Ejy (k)ey(k)
to be computed.
- . +EfR (e, (333
A. Angular momentum representation in the anisotropic layer

We have seen above that solutions to Maxwell's equations ~ m, N o N kD) Ty a L
can be written in two ways. Either they can be expressed as OZJ'”"V'J(m)jL ;aili(”z_;wp( )[E](m)(k)ey(k)
plane waves, or, using a separation of variables approach, R R
they can be written as expansions over spherical harmonics. - E](,‘Q(k)ex(k)]ﬁ, (33b)
Deriving an expression for th& matrix will require us to
make a connection between these two alternative expansiornghere
In this subsection we carry out this task.

To do this we begin with an isotropic medium. In this (X)(k) [ DW*(R)—i D(X)*(k)
special case both the spherical harmonics and the plane wave Y|« im '
solutions are known. The result is a relation between the (34a
plane wave packets and the spherical harmonics. The proce-
dure will then be generalized to cover the case of a uniformly /ey . 00 % py L M~ (y)
anisotropic medium, so as to derive a set of “quasispherical” Ejm(K)=—7j}iajmDjn " (k) + ﬁaimDJm (K-
normal modes. (34b)

1. Spherical modes and plane waves in isotropic media We now sum Eqgs(33) overj andm. This enables the am-

We start with the Maxwell’'s equatior(4) for an isotropic  plitudes E,(k) and Ey(R) in Egs. (30) to be expressed in
medium. Wavelike solutions to these equations written interms of WignerD functions:
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R )i We now apply the procedure described at the end of the
Ex (k)= Ef (k). (35  preceding section to the plane wave packeg). This gives
m a representation of the electromagnetic field in the form of

. . the generalizedT-matrix ansatz(22). Now, however, the
This procedure has started from plane waia8 and spheri- i,
cal harmonics(3), and finished with Eqs(34), (35). This m?ncill.es no longer take the for(23), but rather the modified

equation defines a basis set in the space of the angular de—

pendent amplitudes. e . using,.

In fact, we shall need to carry out the inverse process. The P(m)(p =1y < D% *e'Pe("'r)[Q((k) M
inverse process uses the expansi@® to derive the ex-
pressions for the spherical modds) andM ) from super- D * gD () 37
positions of plane wave&0). The procedure works as fol- im & 12’

lows.
(a) We substitute the expansions of the amplituEgS?) (e) (X) s el . usinéy.
and Ey(R) from Egs.(35) into the superposition&30). m (P, = Y\ 1Dj re e(k)+ 1+u °
(b) From the expressions for the electtmagneti¢ fields

we tham the spherical nlodes~ as coefficient functions pro- +D](¥n)*eip(|;.;) ey(R)> , 37h)
portional toa;,, and — u/na;n, (O{jm and n/uajm). ' ‘

(c) In order to deduce explicit analytical expressions for
the modes, we expand the plane waves over vector spherical (M () FY=y:( —iD® *girek-Nn=1a (k
functions by using Eqs(A13). We then integrate the prod- Qm (p1)=7{~1Djm o e &(K)
ucts of WignerD functions over the angleg, and 6, by +Dm*e”’(k") ex(R)>12, (370
using the orthogonality conditio(A9).

(d) Finally, the moded¥ () are derived from the expres- Q(p,1)=y(DY *elrelk-Dn_Te (k)
sions forM{2) by changmg the Bessel functiofgp) to the _ o
Hankel functlonsh(l)(p) +iD{) * el KDe (k)i (370

Note that, if a linear combination of Bessel functions
jj(p) represents a solution of linear homogeneous dlfferenWhGFGD(X ) *_D(X 2 *(k)
tial equations(Maxwell's equations in our cagethen the Typlcally, solvmg a scattering problem for a spherical par-
corresponding linear combination of Hankel functions gendicle requires modes to be expressed in terms of vector
erates another solution. This remark justifies the last step igpherical harmonics. It thus turns out to be useful to write the
the procedure described above. wave functiong37) as expansions over vector spherical har-
The crucial point is that this inverse procedure can bemonics:
generalized to a uniformly anisotropic medium. Thus it can

be applied to superpositions of plane waves representing so- pla) — (B, @) Y(B) 33
lutions of the Maxwell’s equations in the uniformly aniso- im E ];‘ml Py m(P)Y (T 0, (389
tropic layer, yielding expressions for the modes used in the
generalizedl-matrix ansat£22). In the following subsection w (8. a) 8)
we perform this generalization. Qf )_zﬁ: E‘ | ajj. m( Y (T ), (38b
i"’=lm
2. Wave functions in an anisotropic medium wherea e {m,e}, Be{m,e,o0}, and

We start with the expansiofB5), and use it to derive 8. a) (B) % 2\ ola), . *
formulas for generalized spherical harmonics in the aniso- Pi"j; m P):<ijm (r)-ij(p,r)>;,
tropic medium. The starting point is the well known result A
for plane wave$23—26: qfﬁl D (p)= (Y(B) (1) Qi (p.r));. (39

RN R . usinéy. Explicit formulas for the coefficient functions entering
E=( e'relcNE (k)| e (k) + z

Egs.(38b) are given in Appendix B together with some re-
lated comments. Evaluating these coefficients involves com-
ik De (L A puting some products of Bessel spherical function and
e Ey(k) &y(k)) (368 wigner D functions and integrating these expressions over
k 0,.. Their numerical evaluation is relatively easy.
The coefficients withj#j’ describe angular momentum

1+u

n o aa ~ " oA " n L. .
H=—(erek Dn—1E (K)e (k) —e?® DE (K)e (K))i, mixing. It can be shown that these terms go to zero in the

,u<e ne "Edle (k) —e y(kedk) absence of anisotropy, when=0 andn.=1.
(36b) The modes introduced in this subsection can be used to

derive expansions for incident plane wave in the anisotropic
wheren?=n2(6,)=(1+u)/(1+ucogb) andp.=n.(f)p. medium[18]. In an isotropic material the corresponding ex-
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pansions are given by Eq) and(8). In a uniformly aniso-  Q{®) have been given by Eq&23) for radial anisotropy and
tropic medium these expansions take an exactly analogoq;y Egs.(37) for uniform anisotropy.
form: The continuity conditions at the outside of the droptet,
=Ry, can then be written in matrix notation as follows:
E(mc)_ (mc) P(m) 'u“"‘(mc) P(e)

n jm> (c) (inc) (sca)
qriml @m| [ @im ;[ Bim
2 R g =T g | T eea |- 49)
H(lnc)_"(lnc) Q(m)+ (|nc) Q(e) (40) j’=|m Tjrm dim IBjm
ii(p) 0
These equations can be compared to Efs.In the aniso- n[']-( )’ 0
tropic case the spherical harmoni@ are replaced by the ri(r)= lilp (44)
“quasispherical” modeg37). 0 ji(p) ’
0 —n"[jj(p]

B. T matrix: uniform anisotropy

In Sec. IV A, computing the elements @f matrix for a whereT is defined by the right-hand side of E@4) with
radially anisotropic layer required the solution of a set ofj;(p) replaced byh(l)(p) the index 1 indicates that matrix
equations resulting from the boundary conditid@25). The  elements are calculated at the boundary of dropletR;.
only difference in other cases is that appropriate modes for In the case of a radially anisotropic droplet the matrix on
the electromagnetic field inside the anisotropic layer must béhe left-hand side of Eq43) is diagonal over angular mo-
used. For uniform anisotropy these modes are given by Eqsnentum numbergsee Eq.(27)]. When the droplet is uni-
(38). Mathematically, Eq(26), which describe the fields in  tormly anisotropic, the matri®®i"* ™(r) is no longer diago-
radially anisotropic layer, is replaced by the relation of theng| |n this case it takes the form:
following form:

(mm) —1 (m,e)
p(m) a’j’m p“ p”
(ee) (em)
(e) y d; q;
Qjm . Bi'm i’ m Mo djj i’
= > RI"mpl -~ . (41) R = (me) (mm) , (49)
afm | =i @jrm No 0, qu
- (em) —1 (ee)
p(e) Bjrm Pjj; Pij7;'m

The crucial dlﬁlCU'ty in this case is that the algebralc where the coefficients are func“onsm and are g|Ven by
structure of the equations is complicated by the presence ¢qs.(B1)—(B8) in Appendix B.

angular momentum mixing. Thus, by contrast with the radi- The system(43) can be then simplified by multiplying
ally anisotropic layer considered in Sec. IV A, we are nowWpoth sides by the matrices
unable to derive expressions for the elements offtheatrix

in closed form. The solution of this system of equations now il —ntj 0 0
requires numerical analysis. _2Hj(p): . . i ) (46)
In our subsequent calculations we put the magnetic per- p 0 n 0l

mittivity equal to the unit and concentrate on the limiting
case of a droplet, i.e., when the radius of the isotropic core ofind Hi(p) that can be obtained fromi!(p) by changing
the scattererR,, is negligible ®,—0). This case presents from j; to h{"). Using the known expression for the Wronsk-

fewer technical difficulties than scattering by the annularign of the spherical Bessel functiofl], we derive a system
layer. The crucial point is that the normal modes inside theequwalent to Eqs(43) in the following form:
droplet are all regular at the origin, and thus two types of

modes that appear in the case of the annulus do not appear a'©

here. This reduces the number of variables in the problem by (mC)_ > B ~' " (479
one half as compared to the scattering by a spherical annulus i"=(m| w ](Cin

considered in Ref.18].

So, the harmonics inside the droplet are 2
sca) _ ) I'm

Ejm= a(c) P(m) n-'a (c) Pj(ﬁq) (424 ﬁfm —j’§|m| Ajjrim aﬁn) : (47b

Him= o QY +no aff) Q) (42D whereA|;,. n=—H}-RI "™ andB;; . p=HL-RI" ™

~ From Eq.(47) we can immediately derive an expression
where P{H)=P{)(p,.1), Qi =Q{(po.1), po=mokr  for the T matrix:
=Myp, My=n, /n is the opt|cal contrast, angy,= e, =n;
is the ordmary wave refractive index. The mode§) and Tiir m=[A-B i/ m. (48)
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For radial anisotropy all the matrices on the right-hand sides [~ ' T i — ' _ '
of Egs. (47) are diagonal. So, it is easy to write down the 1}
I’eSU|t f0r theT ma’[riX T“ ’ m— 6“ rT] . 3

sca

T _ [1i(po)Talij(p) 1= Mol j(po) J1lij(p) 11

: [;(po) A[hM () 11— Mol }i(po) 15 [hM ()11
(499

T2 _ Mol §7(po) 1alJ(p) 11— [i7(po) Jalij(p)]1

L meLi1(po) 1D () 11— [i7(po) LM (p) 11
(49b)

0__ (radian)

sca

-—-— effective scatterer
radial anisotropy

These formulas bear close resemblance to the well knowr
Mie expression$17].

VI. NUMERICAL RESULTS 6__ (radian)

sca
From_ a mthematicaI point Of_VieW' the radia_l and uni- FIG. 2. Scattered intensitjsee Eq.(20)] versus the scattering
form anisotropies present interesting but contrasting feature§mg|e atkR,= 1.5kd=4.0, andu,=0.25 for (a) effective isotropic
Here we draw the reader’s attention to some of the Mos{catterer withmeg~1.051 27 Qu=0.14391) andb) radially an-
striking of these. , isotropic layer,n=r(Qyi.=0.1439). Insert at the upper right cor-
Clearly, the difference in symmetry causes the most crug,, enlarges the backscattering tail.
cial differences in the light scattering. Radially anisotropic

layer presents an isotropic face to the world, to the extent compare the angular dependence of the scattering 20
that the scattering properties are independent of the directiog)  the depolarization factors 21 in the two cases. The ag-
of the incident wave. Here the scattering material is IocaIIygregate scattering is the same, by definition. But disaggre-
optically anisotropic, but because of the way that the anisot: ated, we get different contributions, both when looking at
ropy is arranged, the scatterer itself is spherically symmetri ngles and when looking at polarization shifts. In Fig. 2 we
_and remains a globally optically isotropic_o_bject. The resultcompare the angular dependence of the intensities. In the
is that there is no angular momentum mixing and the scatz;se e have considered, the effective scatterer gives a much
tering efficiency does not depend on the angle of incidencg,gre forward scattering signature, and the relatively tiny
and the polarlzatlor) of Incoming wave. backward scattering contribution has a very different angular
In the case of uniform anisotropy, this is no longer true. Ingg cyyre. Likewise, we see from Fig. 3 that the depolariza-

this case the scattering geometry is shown in Fip) &nd o1 factor (21) as a function of the scattering angte., is
we shall discuss quantitative results for uniformly aniso-

tropic droplets later in this section. — . ——

12 _P — effective scatterer | 12~ P — effective scatterer |
A. Radially anisotropic layer and effective isotropic scatterer ey s madalastetiopy dep o radinlanksotropy
b)

We have seen above that the scattering from radially an- 1[®
isotropic layer shares some features of isotropic scatterers
although we do have to introduce the new normal modeos
structure 22 within the anisotropic layer. It is our purpose
here to show briefly that the anisotropy effects can be impor-¢
tant, even for this relatively simple case.

As an example, we compare scattering by a radially an- |
isotropic layer and an isotropic layer of the same dimensions™
chosen in some sense to be the best guess to an equivale
isotropic scatterer. Specifically, we consider scattering by &2
scatterer with a radially anisotropic layer as discussed in Sec

o T T e e e i

[I, with the e, within the layer matching: in the core

outside the scatterer, and anisotropy coefficiemside the
layer. The equivalent effective scatterer has the same dimen-
sions, possesses an isotropic layer of refractive inmgex so
that e is the dielectric constant amdes= nes/n is the op-

()
N

and oL\t . |

0,,, (radian)

\.
L
1
0

sca

(radian)

FIG. 3. Depolarization factdisee Eq(21)] versus the scattering
angle for both the radially anisotropic layer and its effective isotro-

tical contrast. The refractive indem.; is chosen so as to pic scatterer at kR,=1.5u;=0.25 and (a) kd=1.0 (Mg
match scattering efficiencies of the anisotropic layer and ok 1.045 12Q4=0.010 724Q,,4=0.010729), (b) kd=4.0 (M
~1.05 127Q.4=0.143,91Q,,4=0.1439).

the effective scatterer.
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4 T T T 4 T T T
Q - Q
L XX — u=0.6 K =4.0 - X ——- kR,=20.0 EERaRE
—— u=0.4 . —. kR,=10.0 7
sk ~ u=0.2 ] 3| — KR =4.0 o .
u=0.8 1= .

Scattering efficiency
[ 3°)

I
Scattering efficiency
(5]

I

0 0.5 1 ' 1.5 0 0.5 ' 1 ' 1.5
Angle of incidence, 6, (radian) Angle of incidence, 6,  (radian)

FIG. 4. Scattering efficiency of uniformly anisotropic dropletas  FIG. 5. Dependence of the scattering efficiency on the angle of
a function of the angle of incidendéhe angle between the incident incidence for uniformly anisotropic droplet at various values of the
wave and the optical axisat various values of the anisotropy pa- size parameter and=0.4. The refractive indices and n, are
rameteru=(ej—e€,)/€, , with kR;=4.0 andn=n,. matched.

also very sensitive to the presence of anisotropy. straightforward to see that the systé47) is consistent with
Given these relatively large effects for what might bethis conclusion. We show this in Appendix C. Some high-

thought of as minor anisotropy, there is every reason to supights of the results are presented below.

pose that the influence of a uniform anisotropy will be even  The dependence of the scattering efficiency on the angle

more profound. of incidence is shown in Fig. 4. If the size paramekeR, is
not very large, the scattering efficien€y,, is a monotoni-
B. Radially and uniformly anisotropic droplets cally increasing function of the angle of incidenag,., in

In this section we present numerical results for the scatt"€ region from 0 tom/2. By symmetry Q,(finc)
tering efficiency defined by Eq¢15) and (16). We are pri- _=Qxx(77/2— finc), and so the scattering efficiency decreases
marily interested in anisotropy-induced scattering. In ordedn the range fromm/2 to ar.
to concentrate on this test case, we consider the case when " Fig. 5 we show what happens for shorter wavelength
the refractive indices andn, are equal. We shall present a @nd thus higher values &fR,. Now, for relatively large val-
more comprehensive analysis of all possible cases, includinék?_‘es of the size parameter, the cross-section dependence on
the results for the angular distribution of the scattered waved® angle of incidence is no longer monotonic. For example,
elsewhere. We begin with brief comments on numerical pro&t kRi=20.0, the angle at which the scattering efficiency
cedure and then proceed with the description of the calcuQxx reaches its maximum value is no longerr®.
lated dependencies.

It is rather straightforward to perform computations for
radially anisotropic droplets. The expressions for the ele- | Q,(®2) /r—\\
ments of T matrix are known and given by Eq&19a and Q / \
(49b). We can thus evaluate the scattering efficiency by ex-
plicitly computing the sum in the expressi¢hs).

For uniformly anisotropic droplet$ matrix can only be
computed numerically by solving the system of equations¥ / N
(47) [32]. In this case we have rather strong dependence o 2[ /
the scattering efficiency on both the angle of incidence, /
which is the angle between the direction of incidence and the§ | /
optical axis[see Fig. )], and the polarization of the in- @ | /
coming wave. In particular, when the refractive indices are
matched,n=n,, it is expected that the scatterer does not
change thegy component of the incident wave, which simply
transforms into the ordinary wave inside the droplet without 0 B : 1'0 : 1'5 : 20
being affected by the scattering process. The algebraic inter
pretation of this fact is that the amplitudes of the scattered

wave B{s0% and B{5°3 are equal to zero and the quantity of  FIG. 6. Scattering efficiencies of radially and uniformly aniso-

interest isQ,,, which is the only nonvanishing component tropic droplets versus the size parametenat0.4, 6;,.= 7/2, and
of the scattering efficiency tens¢t6). However, it is not n=n,.

4 T T T T T T

ciency
~
s

([
~
I

— — uniform anisotropy
—— radial anisotropy

Size parameter, kR,
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5 - T ' T - T - T - uniformly anisotropic droplets seem to be more sensitive to
changes both in the size and in the anisotropy parameters.

QO (W'2) — — kR,=20.0

VIl. DISCUSSION AND CONCLUSIONS

In this paper we have developedanatrix approach that
can describe light scattering by spherical scatterers contain-
ing optically anisotropic material arranged in an annular
layer. We have confined our discussion to the two cases,
which we have called, using natural language, radially and
uniformly anisotropic systems. Just as in the related case
when the scatterer itself is anisotropic, but the scattering ma-
terial is optically isotropic, the presence of optical anisotropy
affects the algebraic structure that underlies Thenatrix

Scattering efficiency

theory.
ok | s | . | - | s In the case of the uniform anisotropy the light-scattering
0 0.2 0 0.6 03 L problem is not exactly soluble. The key point is that éxact
Anisotropy parameter solutionsfor uniformly anisotropic medium are known as

plane waves, whereas the spherical shape of the particle re-
r(Y:lyires using some kind of spherical modes.
We have found that, by choosing the appropriate basis in

k space, we can define “quasispherical” normal modes.
) . o These modes amrxact solution®f Maxwell's equations and
Figure 6 shows the scattering efficienc®g,(7/2) (for a5 sych mix different angular momentum. However, in the
uniform anisotropy andQ (for radial anisotropyversus the  jimit of zero anisotropy, these modes tend to familiar spheri-
size parameter. The scattering efficiency of uniformly anisotal modes. More importantly, these quasispherical modes
tropic droplet has a pronounced peak located at ak&4t  turn out to be relatively easily accessible computationally. In
~10.0 and exhibits strongly nonmonotonic behavior. Byorder to show this, we have described some of the numerical
contrast, the corresponding dependence for the radially aesults calculated using tiematrix theory presented in this
isotropic droplet is monotonically increasing. In this case thepaper. In particular, we have studied the scattering efficiency
first maximum is reached &R, ~20.0, outside the range of of radially and uniformly anisotropic droplets in which the
kRy shown in Fig. 6. ordinary refractive index matches the refractive index of the
The scattering efficiencies as a function of the anisotropymaterial surrounding them.
parameter, &cu<1, at different values of the size parameter ~ The assumption in which the ordinary refractive index of
are plotted in Fig. 7 and Fig. 8 for the cases of radial andhe droplet matches the isotropic dielectric constant in the
uniform anisotropies, respectively. In both cases an increassurrounding medium is not taken in order to simplify the
in the size parameter leads to the appearance of peaks in thismerical treatment. Rather in this paper we wish to study
range ofu. As compared to radially anisotropic scatterers, thethe light-scattering properties that can be solely attributed to
theanisotropicpart of the dielectric tensor. Thus we have the
anisotropy effects separated out to concentrate on differences
between isotropic and anisotropic optical axis distributions.
— — kR,=20.0 The graphs plotted in Figs. 6—8 indicate that uniformly
-—- kR;=10.0 1 anisotropic droplets are more sensitive to changes in the
— kR=40 _ _._ wavelength and anisotropy parameters than are radially an-
isotropic droplets. Our results are also consistent with results
/7 N RS of previous studief8,14] that the internal spatial distribution
/ \,<‘/ | of the optical axis is a factor that strongly affects light scat-
/ e ’ tering from anisotropic scatterers.
/ . N The results of this work can be regarded as the first step
towards more comprehensive study of light scattering by an-
/ e \ isotropic scatterers. We have demonstrated thafthetrix
approach developed in this paper can be used in an efficient
numerical treatment of the scattering problem. It is thus rea-
| ’ . sonable to expect that further progress can be made by ap-
0.6 0.8 1 plying this theory to more complex problems.
One such problem is the light-scattering problem for a
Faraday-active sphere. This problem has been treated using
FIG. 8. Dependence of the scattering efficiency on the anisotperturbation theory in Ref27] to explain the origin of mag-
ropy parameter for radially anisotropic droplets at various values ofietotransverse light diffusion known as the “photonic Hall
the size parameter and=n,. effect” [28,29.

FIG. 7. Scattering efficiencies of uniformly anisotropic droplets
versus the anisotropy parameter at various values of the size para
eter for 6;,,.= m/2 andn=n, .
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We now try to place this problem in a more general physi- 1

cal context. We were first motivated by the technological Yijm= > cl Yimo,©0e,, (A3)
1

problem of describing light transmission through media with -

liquid crystalline inclusions, and the inverse problem in — J@IF1)I@mD' % | . .
which the matrix is liquid crystalline but the scatterers areWhere Yim=(2I+1)/(4m)Dy, is the spherical function

isotropic. There is considerable current interest in such ma21l .andCJmtﬁvl,}m denotes the Clebsch-Gord@wigner co-
terials for optical applications and displays. The completeefficient,
problem of light transmission through such materials not
only involves the single scattering processes discussed in this
paper, but also more general multiple scattering processes.

The T-matrix formalism is a natural language within
which to discuss such problems. Beginning with single scat-
tering theories of the type discussed in this paper, one can in
principle construct an effective medium theory using, for ex-
ample, the coherent potential approximati@PA) or coated
CPA[30,31]. These theories determine effective optical char-
acteristics of the medium from the condition that the scatter- )
ing cross section is minimal or equal to zero on averageEds-(A2), (A3), and the equality20]
Since this requires averaging over director orientations, it is
important to use basis functions with well defined transfor- clui2l DI = > clii2l pii pl2 (A5)

Y](m):Yj jms (A4a)
YJ(%)ZSJYjJrljm_}'Cijfljmv (A4db)
YJ(%):_Cij+1jm+Sij—ljm1 (A4C)

1/2 1/2

j+1
2j+1

j
2j+1

mation properties under rotations. kakok mgmy M2 Mk Mk,
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APPENDIX A: VECTOR SPHERICAL HARMONICS AND i T T
Bi— _ i—li_ _citli—g
RAYLEIGH EXPANSIONS FOR VECTOR PLANE \/ECV Vs \/Ectl Co G
WAVES

V2cliti=ch =g, (A7)

In this appendix we introduce notations and definitions
used throughout the paper. In addition, we express the vector From Eqgs.(A4), (A6), and (A7) we express the vector
spherical harmonics in terms of WignBrfunctions and de- spherical harmonics in terms of the Wignerfunctions as
duce Rayleigh expansions for vector plane waves. follows:

Let us define the vectors R _ . A o A

Y{EM(r)=Ni{DLY y(Ne_y (1) £ DI (Ne (N2,
ey (N=F(dxig)2=%[e(r) *ig(N]/V2, (A8a3)

e(f)=r, (A1) YR (F)=N; Difo(F)en(r). (A8D)

- _ . ) Note that theD functions meet the following orthogonal-
where ¢=(—sin¢$,cos$,0), JI=(cosfcosg,cosfsing, ity relations[20,27:
—sin ) are the unit vectors tangential to the spheteand 0

are Euler angles of the unit vector These vectors can be
expressed in terms of the vectors of spherical ba@'%,i,
e.,= T (X*iy)/\2, (x, y, andz are the unit vectors directed
along the corresponding coordinate gxas follows:

DI*H\D! (f :4_775.. S (A9)
< mv(l’) mr,,(r)>r 2j+1 ji"Ymm’

where(f);=[2"d¢J Tsin6def. The orthogonality condition
(A9) and Egs.(A8a) and (A8b) show that a set of vector

1 spherical harmonics is orthonormal:
e(n= > Dj,Ne,, (A2) W .

Pt (Y5 (D) YD (0))i=8ap 8ijr Sy - (A10)
whereD! (r)=D! (#,0)=e #*dl () is the WignerD We can now comment on the vector version of the well
function ‘[‘50,22_ r r known Rayleigh expansiofsee, for example, Ref12]):

The vector spherical functions(s) from Egs.(2) are ex- o
pre;sed in terms of the vector spherical harmoigg [20] eip(k~r):4,n_2 E i'i,(p) Y|m(F)Y|*m(|2)- (A1)
defined by =0 m=-1

056609-13
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Let us consider a plane wave with the wave vedtor
=kk and the polarization vectdE defined by its compo-
nents,E,, in the basie,(k) [see Eq(A2)].

From Eq.(A1l), definition of the vector spherical func-

tions (A4), and the equalityfA5) it is not difficult to derive
the following relation:

e, (k)e'®N=2 [2m7(2j+1)]DI (k)
J,m
X Z i'1(p)CY Yijm(D) |,

(A12)

whereD!, (K)=Dl, (¢, 6), C is defined in Eq(A7) and

PHYSICAL REVIEW E65 056609

APPENDIX B: COEFFICIENT FUNCTIONS

By definition, the coefficient functions that enter the ex-
pansions(38) are the matrix element89). In order to de-
duce the corresponding formulas we need to substitute the
expansions for plane waves Eq#&13) into Egs.(37) and
use the matrix elements for the plane wave polarized along
the z axis given by Eqs(Al4a—(Al4c).

The resulting expressions for the matrix elements that cor-
respond to transverse components of the wave funcf{®ns
are

(m,m)

¢y, 0, are the azimuthal and polar angles of the unit vector

k. The sum in square brackets on the right-hand side of Ep

(A12) can be simplified by using EA7) and the recursion
relations for spherical Bessel functiofal]. The final result
for transverse waves can be written in the following form:

e(Kyexpik-r)=2> a[DRKIM{P(p.1)
J,m

—iDR MDA (p,)],  (A133)
g(kexpik-r)=2> a;[iDKMD(p,r)

J,m

+DM(MD(p,1)],  (A13b)

where a;=il[ 7(2j +1)]*2 the modesM (), M{) are de-
fined by Eq.(4a and the function® ), D(y) are expressed
in terms of WignerD functions in Eq (32)

In conclusion, we shall write the formulas for the matrix

p“ m(p):ijr<d}¥j?’,)njj(Pe) d(XJijJ p)>9k+Ap§jn:’;r:1)(p),
(B1)
() =N (A5 () + A (p) g, AR 0),
(B2)
P (p)=—i Ny (d%0 D] (pe) + D D] (p)) o,
+Apae), (B3)
pJ(Je er)n(‘o) Njj- <d1X|Xr)nDJJ(Pe)+dj(y,yr)11Djj(P)>ok
+Ap{52 (), (B4)
A (p) =Ny (d%X i ping + % ()
ji’m jii’\UjrjmljlPe ]mJ] P)le,
(B5)
q](Jm (?7)1(1)):' NJ],<dJyJX2nJJ(pe)n d(XJ mjj(p)>0ka
(B6)

elements of the plane wave with polarization vector directed

along thez axis: (Y{3) * -zexp(k-r)); . The result is as fol-
lows:

(Y zexp(i k-1));

=il[4m(2j+1)1¥2Cl ] Dho(K)ij(p),
(Al4a)

(Y@ * zexp(i k-1));

=ij+1[4’7T]1/2[(2j +3)1/25-Cj+1 1]

mOm

DMK Jj+1(p)

—(2j—1)Y%c;Cl ¢ Dl K)jj-1(p)], (Al4b)

<Y(°)* zexp(i k-1));

=i 41 (2] +3) Y% Cll g Dho (K)jj+1(p)
1)1/231(:] 1 1]

+(2j— om Dl (K)jj—1(p)]. (Al40)

a5 (p)=—iNj; (d*) Dji(pe)ng *+d Djj(p)) .

(B7)
(ee) =iN. d(yy)D —1+d(XX)D'_
q” m(p) i i’ < j’i;m JJ(Pe)n i’j;m J](P)>0k-
(B8)
where Ny =il"“i/g[(2j+1)(2j'+1)]*? and d"
—dja)(ﬁk)d(ﬁ) (6), a,Be{xy.z}. The terms
ApJ (p) are given by
2m
Ap{(p)= ﬁff,zxzn(ﬁ)) (B9)
2m
Apfa(p)=N T r(p),  (B10

056609-14
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We can now combine the relations that come from defi-

,(,e M (p)=Nj; 21—{{1[(14'1)2 m?]/(j+ 1)} nitions of the coefficient functiongsee Eq.(39)]
xri@ ()= [(j+1)(j2-m?)j]¥2
xr@0 (o), (B11) E}ml[pff'”;z po ey —ng P (po)ali]
2 . -
Ap(p) =Ny, [+ P me/(+ 1)y Y@ *(r). 2 [P (po.F)
(z,x) ; i 2 2\ /i 112
X —[(j+1)(j2—m?)/
N1 m(e) =[G+ D (5= m)/j] RO (o s
(ZX) o Jm' j’m’ poy 1
where
N . ] . E n (_a,,e)( )a(lnc) (am)( )(lnc)
(5 (p)= o (A2 (] (pe)sing,,  (B13) 72ty Mot Po Giim(Po)jrm']
Expressions fop(“’g)(p) andqj(f“f%(p) can be derived from = Y{@*(n)- E [a(mc) J(m%,(po,r)

Egs.(B1)-(B13) by replacing spherical Bessel functions of
the first kind j;(x) with spherical Bessel functions of the )
third kind h{(x). +1oa{ Q) (po.D)]) . ae{me}, (CH

Using the orthogonality conditio(Ag) it can be shown ;

that the coefficient functloan“ ) and qj(l"ﬁn)1 are diagonal,

% 0qp9jj+, In the limit of weak anisotropy,—0. with the relations(C1), and (C2) to evaluate the left-hand

side of the system(43) provided that {a{3), a{2}
(|nc) ’“(lnc)}

. . . . - & jm
In this appendix we show mathematically, using our for- To this end, we can use E@5) to write down the sum on

malism, the physically obvious result that if the ordinary the left-hand side of Eq(43) in the following form:
refractive index of a droplet matches that of the scattering

medium, then there will be no scattering of the polarization
component out of the plane of the incident wave and the (a(inc))

APPENDIX C

uniform anisotropy in the droplet. In order to do this, we first E Rii’ m(r) '
extend algebraic relations that follow from E@80). These

equations give the expansion of plane wave propagating in a
uniformly anisotropic medium. We can rewrite them for the p](Jm “r:])(po)a('”c) 1pj(lm ?T)\(Po) ('”C)
plane wave inside the droplet:

~(inc)

j"=[m| j’m

_ g | melealia Dl
~ - o, (|nc) (m,m) (|nc)
Z Ll i P, (po 1) =g Tal TP (pg.1)] i=iml | nodlT o (po) e +q“ 'm(Po) @i
e b e
usin Gipc-
_eXFJ(IPe inc r)Ex(klnc) ex(klnc)“'Tumc (CH
+expli poKine: 1) Ey(Kinc)&,(Kine), (CD  1tis seen that the elements of the column on the right-hand

side of this equation are the sums from the left-hand sides of
(mc) - . (i) (&) . Egs.(C3) and (C4). On the other hand, from Eq&C1) and
2 [cvJ rm Qjrmr (Po 1)+ Noatjrni Qi (po 1) ] (C2), the square bracketed sums on the right-hand sides of
Egs.(C3) and(C4) are the plane waves. So, the elements of
_ N I PO =g L. the column(C5) can be evaluated as scalar products of the
Mol @XPi peking: 1 Me “Ex(Kine)&(Kinc) vector spherical functions and the vector plane waves by
—expli poKinc: F)Ey(lzinc)ex(lzinc)]y (%) using Egs.(Al13) and (A14) of Appendix A.

We can now apply this procedure to calculate the ele-
wherem,= /(1 +u)/(1+ ucob,o) andp.=mep,. The co- Ments Bf the cqumn(NCS) for the ordinary wave with
efficientsa{n® anda{® are defined by Eq¢8) where the {a{n? afny= {aj(ll']qi/)' (n}. From Egs. (8) we have
factor u/n is changed to 1y, . Ey(Kinc) =0 andEy(kmC) 1 in this case. The final result is
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. (inc)
]j(po) a; 0
j'my
nc .
oy | (o0 2P| g (o ' €
2 R (r) .,(mc) = ajmy 0 j Xirmyy
j'=m J m;y
0 . . .
From these equations we immediately conclude that, when
0 {a{n? alny= {a%?,"*](:gcy)} andn=n,, the solution of
, 0 the systen(47) is given by
—17 (inc)
+ no aim;y .
noJJ(Po)
~[i(po) 1’ a@=afn),  FUY=Gme)
(C6)
Whenny,=n (and p=p,), after multiplying Eq.(C6) by (sca) _ o(5ca) _ H(sca) _ H(sca) _
the matriceq46), we have Bim ™= Bimy = Bjm "= Bjmy =0 (€8
(lnc) aino)
> B iy my So, the amplitudes of scattered wasg*3 and {2 vanish
. ji’m ~(|nc) —17 (inc) ! p VY Jmyy
j'=[m| j’my N “Qjmy atn=n,.
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