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Light scattering by optically anisotropic scatterers: T-matrix theory for radial
and uniform anisotropies
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We extend theT-matrix approach to light scattering by spherical particles to some simple cases in which the
scatterers are optically anisotropic. Specifically, we consider cases in which the spherical particles include
radially and uniformly anisotropic layers. We find that in both cases theT-matrix theory can be formulated
using a modifiedT-matrix ansatz with suitably defined modes. In a uniformly anisotropic medium we derive
these modes by relating the wave packet representation and expansions of electromagnetic field over spherical
harmonics. The resulting wave functions are deformed spherical harmonics that represent solutions of the
Maxwell equations. We present preliminary results of numerical calculations of the scattering by spherical
droplets. We concentrate on cases in which the scattering is due only to the local optical anisotropy within the
scatterer. For radial anisotropy we find that nonmonotonic dependence of the scattering cross section on the
degree of anisotropy can occur in a regime to which both the Rayleigh and semiclassical theories are inappli-
cable. For uniform anisotropy the cross section is strongly dependent on the angle between the incident light
and the optical axis, and for larger droplets this dependence is nonmonotonic.
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I. INTRODUCTION

The problem of light scattering by particles of one m
dium embedded in another has a long history, dating b
almost a century to the classical exact solution by Mie@1#.
The Mie solution applies to scattering by uniform spheri
particles with isotropic dielectric properties. More recent
this strategy has been successfully applied to ellipsoidal
ticles and some circumstances in which the dielectric ten
is anisotropic@2–8#.

There are a large number of physical contexts in whic
is useful to understand light scattering by impurities@9#. A
particular example of recent interest concerns liquid cry
devices. There are now a number of systems in which liq
crystal droplets are suspended in a polymer matrix—the
called polymer dispersed liquid crytal~PDLC! systems—or
the inverse system, involving colloids now with a nema
liquid crystal solvent. These inverse systems are commo
known as filled nematics@10,11#.

In such systems one needs to calculate light scattering
composite anisotropic particles embedded in an isotropic
an anisotropic matrix. The model scatterer usually consist
a small central isotropic particle~‘‘the core’’!, coated by a
much larger region in which the optical tensor is anisotrop
This is equivalent to examining light scattering by a comp
ite particle consisting of the central core plus a surround
liquid crystalline layer.

A number of approaches are available to study light sc
tering by complex objects. A brief summary is as follow
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The scattering amplitudes can be described using Gre
function techniques@12#, but these involve solving comple
integral equations over infinite domains. Under some
cumstances one can approximate the kernels of these e
tions either as the incident wave or as a semiclassical
turbed wave, leading to the well-known Rayleigh-Gans~RG!
and anomalous diffraction approximations~ADA !. These
have been used by Zˇumer and co-workers to examine th
problems we consider in this paper@13,14#. However, the
approximations are only valid over certain wavelength a
optical contrast regimes. The century-old Mie strategy a
its modernT-matrix extensions yield exact solutions, but u
fortunately this approach does not work in every case.
nally, one can of course use real space finite element
proaches. However, in order to be efficient and accur
these have to be very computationally intensive. In parti
lar, without significant increase in computational power, t
type of approach will probably not be adequate to disc
scattering in complex many-particle systems. For a m
comprehensive review we refer the reader to Chap. 2 in R
@15# and references therein.

The analysis of a Mie-type theory uses a systematic
pansion of the electromagnetic field over vector spher
harmonics. The specific form of the expansions is known
theT-matrix ansatz@16#. TheT-matrix theory is known to be
a computationally efficient approach to study light scatter
by nonspherical optically isotropic particles@15#. One may
thus expect that aT-matrix approach to geometrically spher
cal but optically nonspherical scatterers can at the very le
enable scattering properties to be evaluated when the
proximate methods cannot be applied. In addition, wher
the region of validity of the approximate methods such
RG and ADA in the case of isotropic scatterers is reasona
well understood, in the case of anisotropic scatterers
problem has not been studied in any detail.
©2002 The American Physical Society09-1
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FIG. 1. Distributions of optical axis in the anisotropic layer around a spherical particle for radial and uniform structures. The a

incidenceu inc is the angle between the direction of incidencek̂ and the direction of the uniform anisotropy. The polarization vectorey( k̂ inc)

is normal to the plane of the picture,ey( k̂ inc)} k̂ inc3 ẑ. Inside the uniformly anisotropic layer plane waves linearly polarized alongey( k̂ inc)
represent ordinary waves.
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Recently, in Refs.@7,8# we have studied the scatterin
problem for the optical axis distributions of the form:nr r̂
1nqq̂1nwŵ. By using separation of variables and expa
sions over vector spherical harmonics, we have develo
the generalized Mie theory as an extension of theT-matrix
ansatz@16#. This theory combines computational efficien
of the T-matrix approach and well defined transformati
properties of the spherical harmonics under rotations. In
paper we discuss this theory in more detail and explain h
this approach can be extended to the case of uniformly
isotropic spherical particles.

The layout of the paper is as follows. General discuss
of the model is given in Sec. II. Then in Sec. III we outlin
theT-matrix formalism for the isotropic medium in the form
suitable for subsequent generalization. In Sec. IV, as the s
plest case to start from, we consider how theT-matrix ansatz
applies for the radially anisotropic layer. We find that t
structure of electromagnetic modes in the layer requ
modification of the standardT-matrix ansatz. In Sec. V we
describe the method to put the scattering problem into
language ofT-matrix by linking the representations of plan
wave packets and of spherical harmonics. For uniformly
isotropic scatterer we define generalized spherical harmo
and show that the effect of angular momentum mixing can
treated efficiently. In Sec. VI we make brief comments on
numerical strategy and present some numerical results fo
total scattering cross section in the limiting case of a drop
i.e., when the radius of the isotropic core of the scattere
negligible. Anisotropy effects are our primary concern a
for this reason we pay special attention to the special case
which the ordinary wave refractive index and the refract
index of the material are matched. In addition, we empha
the importance of anisotropy effects by making comparis
between angular distributions of scattered wave intens
for radially anisotropic layers and effective isotropic laye
of the same scattering efficiency. Finally, in Sec. VII w
present our results and make some concluding remarks.
tails on some technical results are relegated to Append
A–C.

II. MODEL

We consider scattering by a spherical particle of radiusR1
embedded in a uniform isotropic dielectric medium with d
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electric constante i j 5ed i j and magnetic permeabilitym i j

5md i j . The scattering particle consists of an inner isotro
core of radiusR2, surrounded by an anisotropic annular lay
of thicknessd5R12R2.

Within the inner core of the scatterer the dielectric ten
e, and the magnetic permittivitym take the valuesei j

5e2d i j , mi j 5m2d i j . The dielectric tensor within the annu
lar layer is locally uniaxial. The optical axis distribution

defined by the vector fieldn̂. ~Carets will denote unit vec-
tors.! Then within the annular layer ei j (r )5e1d i j

1De1„n̂(r ) ^ n̂(r )…i j andmi j 5m1d i j . The unit vectorn̂ cor-
responds to a liquid crystal director for material within th
annular region withe15e' andDe15e i2e' .

We shall suppose that the director field can be written

one of the following forms: n̂5 ẑ or n̂5 r̂ , where r̂
5(sinu cosf,sinu sinf,cosu) is the unit radial vector;f

andu are Euler angles of the unit vectorr̂ ; x̂, ŷ, andẑ are the
unit vectors directed along the corresponding coordin
axes.

In Fig. 1 we have shown these director distributions. F
ure 1~a! shows the radial~and spherically symmetric! direc-
tor distribution. Light scattering from the radially anisotrop
annular layer was first studied long ago by Roth and Digm
@3# using the technique normally known as Debye potentia
In this case the spherical symmetry of the problem plays
important role in rendering the Maxwell equations solub
In an earlier paper@8# we have recovered this solution as
special case of a more general set of anisotropies. A cru
step in the derivation of this result involves writing the s
called modifiedT-matrix ansatz.

We show in Fig. 1~b! the case in which the optical axis i
directed along thez axis and is uniformly distributed within
the annular layer. The case where the scatterer is a
cylinder parallel ton̂ presents no difficulties and can b
treated in cylindrical coordinate system@17#. Scattering from
spherical uniformly anisotropic particles is not exac
soluble @17# and has been studied by using the Rayleig
Gans method and the anomalous diffraction approxima
in Refs.@13,14#.

A simple limit of the physical situations we consider pu
9-2
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LIGHT SCATTERING BY OPTICALLY ANISOTROPIC . . . PHYSICAL REVIEW E65 056609
e5e15e2, with m5m15m2. The first condition allows us to
concentrate on situations in which the scattering is gover
by the anisotropic part of the dielectric properties. This d
tinguishes our case from other studies of scattering
spheres, in which the isotropic optical contrast domina
However, there is also a motivation for this hypothesis
terms of liquid crystal device physics, and we shall disc
this at greater length in a subsequent paper. However,
result of the hypothesis is that the scattering by our mo
spheres disappears in the limit of zero anisotropy. In ad
tion, for a uniformly anisotropic layer we shall show expli
itly that the scattering process does not involve they com-
ponent of the incoming plane wave provided the refract
indicesn andn1 are matched.

III. T-MATRIX APPROACH IN ISOTROPIC MEDIUM

A. T-matrix ansatz

In this subsection we remind the reader about the relat
ship between Maxwell’s equations in the region of a scatte
and the formulation of scattering properties in terms of thT
matrix @9,12#. Our formulation is slightly nonstandard. Som
technical details, which can be omitted at first reading, h
been relegated to the appendixes~more details can be foun
in Refs.@18,19#!.

We shall need to write the Maxwell equations for a h
monic electromagnetic wave~time-dependent factor is
exp$2ivt%) in the form:

2 ini@m iki #
21

“3E5H, ~1a!

im i@niki #
21

“3H5E1ui~ n̂•E!n̂, ~1b!

where ni5Ae im i are refractive indexes for the region
where R2,r ,R1 ( i 51) and r ,R2 ( i 52); ki5nikvac
(kvac5v/c52p/l is the free-space wave number!. We de-
fine theanisotropy parameterasu15De1 /e1 ~in the annular
layer!. Then inside the isotropic coreu250. Finally, for
brevity, in the region outside the scattererr .R1, the index
will be suppressed, givingk[nkvac andu50.

The electromagnetic field can always be expanded u
the vector spherical harmonic basis,Y j 1d j m(f,u)
[Y j 1d j m( r̂ ) (d50,61) @20#, as follows:

E5(
jm

Ejm5 (
jm

a5o,e,m

pjm
(a)~r !Y jm

(a)~ r̂ !, ~2a!

H5(
jm

H jm5 (
jm

a5o,e,m

qjm
(a)~r !Y jm

(a)~ r̂ !, ~2b!

whereY jm
(m) , Y jm

(e) , andY jm
(o) are magnetic, electric, and lon

gitudinal harmonics, respectively, defined by Eq.~A4! ~a
number of relations for the vector spherical harmonics u
throughout this paper are considered in Appendix A!. The
electric field is now completely described by the coefficie
$pjm

(a)(r )% and similarly the magnetic field is now describe
by $qjm

(a)(r )% with a5$o,e,m%.
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In the simplest case of an isotropic medium we can
separation of variables to derive the coefficient functions t
can be expressed in terms of spherical Bessel functio
j j (x)5@p/(2x)#1/2Jj 11/2(x), and spherical Hankel function
@21#, hj

(1)(x)5@p/(2x)#1/2H j 11/2
(1) (x), and their derivatives as

follows:

Ejm5a jmM jm
(m)~r, r̂ !1b jmM̃ jm

(m)~r, r̂ !2
m

n
@ã jmM jm

(e)~r, r̂ !

1b̃ jmM̃ jm
(e)~r, r̂ !#, ~3a!

H jm5ã jmM jm
(m)~r, r̂ !1b̃ jmM̃ jm

(m)~r, r̂ !1
n

m
@a jmM jm

(e)~r, r̂ !

1b jmM̃ jm
(e)~r, r̂ !#, ~3b!

wherea jm , ã jm , b jm , andb̃ jm are integration constants; th
vector functionsM jm

(a) andM̃ jm
(a) are given by

M jm
(m)~r, r̂ !5 j j~r!Y jm

(m)~ r̂ !,

M jm
(e)~r, r̂ !5D j j~r!Y jm

(e)~ r̂ !1
Aj ~ j 11!

r
j j~r!Y jm

(o)~ r̂ !,

~4a!

M̃ jm
(m)~r, r̂ !5hj

(1)~r!Y jm
(m)~ r̂ !,

M̃ jm
(e)~r, r̂ !5Dhj

(1)~r!Y jm
(e)~ r̂ !1

Aj ~ j 11!

r
hj

(1)~r!Y jm
(o)~ r̂ !,

~4b!

whereD f (x)[x21(d/dx)@x f(x)# andr[kr.
There are two cases of Eq.~3a! that are of particular in-

terest. They correspond to the incoming incident wa
$Einc ,H inc% and the outgoing scattered wave$Esca,Hsca%:

Ejm
( inc)5a jm

( inc) M jm
(m)2

m

n
ã jm

( inc) M jm
(e) ,

H jm
( inc)5ã jm

( inc) M jm
(m)1

n

m
a jm

( inc) M jm
(e) , ~5!

Ejm
(sca)5b jm

(sca) M̃ jm
(m)2

m

n
b̃ jm

(sca) M̃ jm
(e) ,

H jm
(sca)5b̃ jm

(sca) M̃ jm
(m)1

n

m
b jm

(sca) M̃ jm
(e) . ~6!

Now the incoming incident wave is characterized by amp
tudes a jm

( inc) , ã jm
( inc) and the scattered outgoing waves a

similarly characterized by amplitudesb jm
(sca) , b̃ jm

(sca) . Our
task is now to relate$a% and$b%.

In this regime, the polarization vector of a transver
plane wave incident in the direction specified by an u
vector k̂ inc is
9-3
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E( inc)5 (
n561

En
( inc)en~ k̂ inc!. ~7!

We show in Eq.~A13! the coefficients$a% of the expansion
~5! takes the form:

a jm
( inc)[ (

a5x,y
a jm; a

( inc) Ea
( inc)5 i a j (

n561
Dmn

j ~ k̂ inc!nEn
( inc) ,

ã jm
( inc)[ (

a5x,y
ã jm; a

( inc) Ea
( inc)5n/m a j (

n561
Dmn

j ~ k̂ inc!En
( inc) ,

~8!

wherea j5 i j 11@2p(2 j 11)#1/2, Dmm8
j is the WignerD func-

tion @20,22# and the basis vectorse61( k̂ inc) are perpendicu-
lar to k̂ inc and defined by Eq.~A2!.

Thus outside the scatterer the electromagnetic field
sum of the transverse plane wave incident in the direc
specified by a unit vectork̂ inc (b jm

( inc)5b̃ jm
( inc)50) and the

outgoing wave witha jm
(sca)5ã jm

(sca)50 as required by the
Sommerfeld radiation condition.

So long as the scattering problem is linear, the coefficie
b jm

(sca) and b̃ jm
(sca) can be written as linear combinations

a jm
( inc) and ã jm

( inc) :

b jm
(sca)5 (

j 8,m8
FTjm, j 8m8

11 a j 8m8
( inc)

1
m

n
Tjm, j 8m8

12 ã j 8m8
( inc)G ,

b̃ jm
(sca)5 (

j 8,m8
F n

m
Tjm, j 8m8

21 a j 8m8
( inc)

1Tjm, j 8m8
22 ã j 8m8

( inc)G . ~9!

These formulas define the elements of theT matrix in the
most general case.

In general, the outgoing wave with angular momentu
index j arises from ingoing waves of all other indicesj 8. In
such cases we say that the scattering process mixes an
momenta@16#. The light scattering from the uniformly aniso
tropic scatterer, depicted in Fig. 1~b!, provides an example o
such a scattering process. In this case the cylindrical sym
try of the optical axis distribution causes theT matrix to be

diagonal over azimuthal indicesm and m8: Tjm, j 8m8
nn8

5dmm8 Tj j 8; m
nn8 . Then we can conveniently rewrite the rel

tion ~9! using matrix notations:

bjm
(sca)5(

j 8
T j j 8; maj 8m

( inc) , ~10!

where

T j j 8; m5S Tj j 8; m
11 Tj j 8; m

12

Tj j 8; m
21 Tj j 8; m

22 D ,

ajm
( inc)5S a jm

( inc)

m/n ã jm
( inc)D and bjm

(sca)5S b jm
(sca)

m/n b̃ jm
(sca)D .
05660
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In simpler scattering processes, by contrast, such ang
momentum mixing does not take place. Many quantum s
tering processes and classical Mie scattering belong to
category. It is seen from Fig. 1~a! that radial anisotropy keep
intact spherical symmetry of the scatterer. The radially ani
tropic annular layer thus exemplifies a scatterer that does
mix angular momenta. TheT matrix of a spherically sym-
metric scatterer is diagonal over the angular momenta

the azimuthal numbers:Tj j 8,mm8
nn8 5d j j 8dmm8Tj

nn8 .

B. Scattering amplitude matrix

We have seen that the relation between the scattered w
~6! and the incident plane wave~5! is linear. In the far field
region (r@1), where the asymptotic behavior of the sca
tered outgoing wave is given by

i j 11Ejm
(sca);

eir

r (
n561

fn; jm , ~11a!

i j 11m/n H jm
(sca);

2 i eir

r (
n561

nfn; jm , ~11b!

fn; jm[Nj ~en•bjm
(sca)!Dm n

j * ~ k̂sca!en~ k̂sca!,

with en5(2n,2 i )/A2 andNj5A(2 j 11)/4p, the scattering
amplitude matrixA( k̂sca,k̂ inc), which relatesEsca and the
polarization vector of the incident waveE( inc) is defined in
the following way@9,12,16#:

En
(sca)[„en* ~ k̂sca!,Esca…5

eir

r (
n8561

Ann8~ k̂sca,k̂ inc!En8
( inc) ,

~12!

where an asterisk indicates complex conjugation,k̂sca5 r̂
and ê61( k̂sca)57(q̂6 i ŵ)/A2.

Equations~6!, ~11a! and the vector spherical harmon
relations Eqs.~A8! can now be combined to yield the expre
sion for the scattering amplitude matrix in terms of theT
matrix:

Ann8~ k̂sca,k̂ inc!52
i

2 (
jm

(
j 8m8

@~2 j 11!~2 j 8

11!#1/2Dmn
j * ~ k̂sca!Dm8n8

j 8 ~ k̂ inc!

3@nn8 Tjm, j 8m8
11

2 in Tjm, j 8m8
12

1 in8 Tjm, j 8m8
21

1Tjm, j 8m8
22

#. ~13!

All scattering properties of the system can be compu
from the elements of the scattering amplitude matrix. In E
~13! we see that this can be defined in terms of the eleme
of theT matrix defined in Eq.~9!. Thus computation of these
matrix elements is of crucial importance.
9-4
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C. Scattering efficiency

In order to find the total scattering cross sectionCsca we
need to calculate the flux of Poynting vector of the scatte
wave S(sca)5c/(8p)Re(Esca3Hsca* ) through a sphere o
sufficiently large radius and divide the result byuS( inc)u.

Using the expressions~11! and the orthogonality relation
~A9!, we can deduce the result for the total scattering cr
section:

Csca5k22I inc
21(

jm
@bjm

(sca)#†bjm
(sca) , ~14!

where I inc5(n561uEn
( inc)u2 and the superscript † indicate

Hermitian conjugation. We can now relate the scatter
cross section and the elements of theT matrix. More pre-
cisely, we consider the scattering efficiencyQ that is the ratio
of Csca and area of the composite particleS5pR1

2.
Equations~8!, ~10!, and ~14! can now be combined to

yield the expression for the scattering efficiency of a u
formly anisotropic scatterer in the following form:

Q5I inc
21 (

a5x,y,
b5x,y

QabEa
( inc)Eb

( inc) * , ~15!

~kR1!2p Qab5(
jm

@bjm; b
(sca) #†bjm; a

(sca) , ~16!

bjm; a
(sca) 5(

j 8
T j j 8; maj 8m; a

( inc) . ~17!

So, we have the scattering efficiency tensorQab , which is,
in general, nondiagonal and depend on incident wave ang

For a spherically symmetric scatterer this tensor is dia
nal and independent ofk̂ inc . In this case theT matrix is
diagonal and from Eqs.~15!–~17! we have the known resul
@16#:

Qab5
2dab

k2R1
2 (

j 51

`

(
m,n51

2

~2 j 11!uTj
mnu2. ~18!

In order to characterize angular distribution of scatte
light intensity let us suppose that the incident wave is l
early polarized and is propagating along thez axis, k̂ inc5 ẑ.
The wave vectorsk̂ inc and k̂sca define the scattering plane
For diagonalT matrix Eqs.~12! and~13! give the amplitudes
of the scattered wave components that are parallel (Ex

(sca))
and normal (Ey

(sca)) to the scattering plane:

uEx
(sca)u2~usca!5I inci i~usca!cos2c, ~19a!

uEy
(sca)u2~usca!5I inci'~usca!sin2c, ~19b!

i i , '5u i 16 i 21u2, ~19c!

i 61~usca!5~kR1!21(
j

~ j 11/2!d1, 61
j ~usca!@Tj

116Tj
22#,

~19d!
05660
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wherec is the angle between the polarization vector of t
incident wave and the scattering plane.

In Sec. VI A we shall use the intensityi sca(usca),

i sca~usca!5@ i i~usca!1 i'~usca!#/2, ~20!

and the factor characterizing the degree of depolariza
~depolarization factor! Pdep(usca),

Pdep~usca!512
u i i~usca!2 i'~usca!u
i i~usca!1 i'~usca!

~21!

as quantities characterizing angular distribution and polar
tion of the scattered wave@23#. Note that averaging
i sca(usca) over the scattering angle gives the scattering e
ciency:

Q5E
0

p

i sca~usca!sinuscadusca.

IV. SCATTERING FROM RADIALLY ANISOTROPIC
LAYER

In Sec. III A we started from the general expansion f
electromagnetic field over the vector spherical harmon
~2!. Then the fields in isotropic medium were expressed
terms of the modes,M jm

(a) and M̃ jm
(a) @see Eq.~4!#. This ex-

pression is known as theT matrix ansatz@15,16#.
We shall write down the results for electromagnetic fie

within the radially anisotropic layer as they are given in R
@8#. These can be written in the form similar to theT-matrix
ansatz:

Ejm5a jmPjm
(m)1b jmP̃jm

(m)2
m

n
~ ã jmPjm

(e)1b̃ jmP̃jm
(e)!,

~22a!

H jm5ã jmQjm
(m)1b̃ jmQ̃jm

(m)1
n

m
~a jmQjm

(e)1b jmQ̃jm
(e)!.

~22b!

For radial anisotropy the modes that enter Eqs.~22! are given
by

Pjm
(m)5M jm

(m)~r1 , r̂ !, ~23a!

Qjm
(e)5M jm

(e)~r1 , r̂ ! , ~23b!

Qjm
(m)5 j j̃ ~r1! Y jm

(m)~ r̂ !, ~23c!

Pjm
(e)5D j j̃ ~r1! Y jm

(e)~ r̂ !1@ j̃ ~ j̃ 11!#1/2r1
21 j j̃ ~r1! Y jm

(o)~ r̂ !,
~23d!

where j̃ ( j̃ 11)5 j ( j 11)/(11u1) andr i[kir .
In the following section we shall find that the fields

uniformly anisotropic medium can also be written in th
form ~22!. However, the expressions for the normal modes
this case will differ from those of Eqs.~23!. In both cases the
modes represent solutions of Maxwell’s equations and t
into the isotropic medium modes~4! in the limit of small
anisotropy parameter,u→0.
9-5
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The radial anisotropy harmonics~22! do not involve an-
gular momentum mixing and as such they only have con
butions proportional to vector spherical harmonics with a
gular momentum numbers givenj and m. The important
difference between the two cases lies in the fact that for
uniformly anisotropic layer this is no longer true.

The fields inside the isotropic core of the particle sim
larly also involve no angular momentum mixing:

Ejm
(c)5a jm

(c) M jm
(m)2

m2

n2
ã jm

(c) M jm
(e) , ~24a!

H jm
(c)5ã jm

(c) M jm
(m)1

n2

m2
a jm

(c) M jm
(e) , ~24b!

whereM jm
(e,m)5M jm

(e,m)(r2 , r̂ ) andr2[k2r .
We now pass on to the calculation of the scattering cr

section using theT-matrix method. The formulas presente
in this subsection form a key element in the input to t
calculation.

A. T matrix: radial anisotropy

In order to calculate the elements ofT matrix, we need to
use continuity of the tangential components of the elec
and magnetic fields as boundary conditions atr 5R2 and r
5R1. Equivalently, the functionspjm

(a)[^Y jm
(a)* •E& r̂ , and

qjm
(e)[^Y jm

(a) * •H& r̂ , a5m,e, must be continuous at eac
boundary:
ec
so
ua
io
ve
ts

05660
i-
-

e

s

c

pjm
(a)~Ri10!5pjm

(a)~Ri20!,

qjm
(a)~Ri10!5qjm

(a)~Ri20!, i 51,2. ~25!

For the radially anisotropic distribution different angular m
mentum are decoupled. We have shown elsewhere that tT
matrix can be computed in the closed form@8#, and here we
shall comment on this calculation~for more details see Ref
@18#!.

Expressions for$pjm
(a) ,qjm

(a)% in the ambient medium have
been given implicitly in Eqs.~5! and~6!. Similar expressions
in the annular layer have been given by Eqs.~22! and ~23!.
Finally, the analogous expressions inside the isotropic c
have been given in Eq.~24!.

In order to determine theT matrix we shall insert these
expressions into the boundary conditions~25!. This will
yield a system of eight linear algebraic equations for the
quantities:a jm

( inc) , ã jm
( inc) , b jm

(sca) , b̃ jm
(sca) , a jm , b jm , ã jm ,

b̃ jm , a jm
(c) , and ã jm

(c) . After eliminating all internal variables
we shall be left with two equations in the four unknown
a jm

( inc) , ã jm
( inc) , b jm

(sca) , and b̃ jm
(sca) . These equations will de

fine theT matrix.
In order to carry out this procedure efficiently we com

bine Eqs.~2! and~22! by using the compact matrix notatio
for the components inside the anisotropic layer:

S pjm
(m)~r !

qjm
(e)~r !

qjm
(m)~r !

pjm
(e)~r !

D 5Rj~r !S a jm

b jm

ã jm

b̃ jm

D , ~26!

where
Rj~r !5S j j~r1! hj
(1)~r1! 0 0

n1m1
21D j j~r1! n1m1

21Dhj
(1)~r1! 0 0

0 0 j j̃ ~r1! hj̃
(1)

~r1!

0 0 2m1n1
21D j j̃ ~r1! 2m1n1

21Dhj̃
(1)

~r1!
D . ~27!
We can now apply the boundary conditions at the diel
tric discontinuities on the inside and outside of the ani
tropic layer and solve the system of linear algebraic eq
tions. This yields the standard general form for the relat
between the amplitudes of the incoming and outgoing wa
~9!, with the following explicit expressions for the elemen
of the T matrix:

Tj
115

c2 @ j j~r!#12n/m c1 @ j j~r!#18

n/m c1 @hj
(1)~r!#182c2 @hj

(1)~r!#1

,

Tj
2252

c̃2 @ j j~r!#11m/n c̃1 @ j j~r!#18

m/n c̃1 @hj
(1)~r!#181 c̃2 @hj

(1)~r!#1

, ~28!
-
-
-

n
s

whereD f (x)ur 5Ri
[@ f (x)# i8 , f (x)ur 5Ri

[@ f (x)# i , and

S c1 0

c2 0

0 c̃1

0 c̃2

D 5R1
j ~R2

j !21

3S @ j j~r2!#2 0

n2m2
21@ j j~r2!#28 0

0 @ j j~r2!#2

0 2n2
21m2@ j j~r2!#28

D ,

Ri
j[Rj ur 5Ri

. ~29!
9-6
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We note that in this result the off-diagonal elements of
T matrix vanish:Tj

125Tj
2150. This result is quite general fo

spherically symmetric scatterers, and physically means
there is no coupling between transverse electric and tr
verse magnetic waves. Equivalently there is no depolar
tion scattering in this scatterer. Mathematically, the res
follows because the matrix~27! is block diagonal.

V. SCATTERING FROM UNIFORMLY ANISOTROPIC
LAYER

By contrast with the case of the radially anisotropic sc
terer considered in the preceding section, the electromagn
field inside the uniformly anisotropic annular layer can eas
be described in terms of plane waves. Unfortunately t
does not render the scattering problem soluble. The diffic
lies in satisfying the boundary conditions for a spherical sc
terer using the plane wave solutions of the Maxwell eq
tions.

The starting point of theT-matrix approach to this cas
involves finding a representation of the electromagne
wave analogous to the generalizedT-matrix ansatz~22!.
However, for symmetry reasons, the structure of the mo
representing the fields in the uniformly anisotropic mediu
differs from that in the spherically symmetric isotropic~or a
radially anisotropic! geometry. In particular, the lack o
spherical symmetry implies that the angular moment
numberj is no longer a good quantum number. However,
cylindrical symmetry still guarantees conservation of the a
muthal numberm.

The procedure is as follows. In Sec. V A we provid
methods of defining modes in a uniformly anisotropic ma
rial. These modes are:~a! solutions of the Maxwell’s equa
tions and~b! deformations of the isotropic spherical harmo
ics. The latter condition means that the isotropic modes E
~4! are recovered in the weak anisotropy limit,u→0. Then
in Sec. V B, we shall use these ‘‘quasispherical’’ wave fun
tions to derive equations that enable the elements ofT matrix
to be computed.

A. Angular momentum representation in the anisotropic layer

We have seen above that solutions to Maxwell’s equati
can be written in two ways. Either they can be expressed
plane waves, or, using a separation of variables appro
they can be written as expansions over spherical harmon
Deriving an expression for theT matrix will require us to
make a connection between these two alternative expans
In this subsection we carry out this task.

To do this we begin with an isotropic medium. In th
special case both the spherical harmonics and the plane w
solutions are known. The result is a relation between
plane wave packets and the spherical harmonics. The pr
dure will then be generalized to cover the case of a uniform
anisotropic medium, so as to derive a set of ‘‘quasispheric
normal modes.

1. Spherical modes and plane waves in isotropic media

We start with the Maxwell’s equations~1! for an isotropic
medium. Wavelike solutions to these equations written
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terms of spherical coordinate basis functions are given
Eqs.~3! and ~4!. An electromagnetic wave can alternative
be written as a superposition of plane waves:

E5^exp~ ir k̂• r̂ !@Ex~ k̂! ex~ k̂!1Ey~ k̂!ey~ k̂!#& k̂ , ~30a!

H5
n

m
^exp~ ir k̂• r̂ !@Ex~ k̂!ey~ k̂!2Ey~ k̂!ex~ k̂!#& k̂ ,

~30b!

where^ f & k̂[*0
2pdfk*0

psinukduk f.
In Appendix A we derive expressions connecting the is

tropic spherical modes~4a! and the vector plane waves oc
curring in the superposition~30!:

M jm
(m)~r, r̂ !5g j^e

ir( k̂• r̂ )@D jm
(y) * ~ k̂!ex~ k̂!

2 iD jm
(x) * ~ k̂!ey~ k̂!# & k̂ , ~31a!

M jm
(e)~r, r̂ !5g j^e

ir( k̂• r̂ )@ iD jm
(x) * ~ k̂!ex~ k̂!

1D jm
(y) * ~ k̂!ey~ k̂!# & k̂ , ~31b!

whereg j[ i 2 j (4p)22Ap(2 j 11) and

D jm
(x,y)~ k̂![e2 im fkdjm

(x,y)~uk!5Dm,21
j ~ k̂!

7Dm, 1
j ~ k̂!, D jm

(z)~ k̂![Dm, 0
j ~ k̂!. ~32!

These relations can be explicitly verified by substituti
the expansions~A13! into the right-hand sides of Eqs.~31!.
The linear combinations of the modesM jm

(m)(r, r̂ ) and

M jm
(e)(r, r̂ ) which enter the electromagnetic field harmoni

~3! can now be expressed as a superposition of plane wa

a jmM jm
(m)2

m

n
ã jmM jm

(e)5^eir( k̂• r̂ )@Ejm
(x)~ k̂!ex~ k̂!

1Ejm
(y)~ k̂!ey~ k̂!#& k̂ , ~33a!

ã jmM jm
(m)1

n

m
a jmM jm

(e)5
n

m
^eir( k̂• r̂ )@Ejm

(x)~ k̂!ey~ k̂!

2Ejm
(y)~ k̂!ex~ k̂!#& k̂ , ~33b!

where

Ejm
(x)~ k̂!5g j H a jm D jm

(y) * ~ k̂!2 i
m

n
ã jm D jm

(x) * ~ k̂!J ,

~34a!

Ejm
(y)~ k̂!52g j H ia jmD jm

(x) * ~ k̂!1
m

n
ã jmD jm

(y) * ~ k̂!J .

~34b!

We now sum Eqs.~33! over j and m. This enables the am
plitudes Ex( k̂) and Ey( k̂) in Eqs. ~30! to be expressed in
terms of WignerD functions:
9-7
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Ex, y~ k̂!5(
jm

Ejm
(x, y)~ k̂!. ~35!

This procedure has started from plane waves~30! and spheri-
cal harmonics~3!, and finished with Eqs.~34!, ~35!. This
equation defines a basis set in the space of the angula
pendent amplitudes.

In fact, we shall need to carry out the inverse process.
inverse process uses the expansions~35! to derive the ex-
pressions for the spherical modesM jm

(a) andM̃ jm
(a) from super-

positions of plane waves~30!. The procedure works as fol
lows.

~a! We substitute the expansions of the amplitudesEx( k̂)
andEy( k̂) from Eqs.~35! into the superpositions~30!.

~b! From the expressions for the electric~magnetic! fields
we obtain the spherical modes as coefficient functions p
portional toa jm and2m/nã jm (ã jm andn/ma jm).

~c! In order to deduce explicit analytical expressions
the modes, we expand the plane waves over vector sphe
functions by using Eqs.~A13!. We then integrate the prod
ucts of WignerD functions over the anglesfk and uk by
using the orthogonality condition~A9!.

~d! Finally, the modesM̃ jm
(a) are derived from the expres

sions forM jm
(a) by changing the Bessel functionsj j (r) to the

Hankel functionshj
(1)(r).

Note that, if a linear combination of Bessel functio
j j (r) represents a solution of linear homogeneous differ
tial equations~Maxwell’s equations in our case!, then the
corresponding linear combination of Hankel functions ge
erates another solution. This remark justifies the last ste
the procedure described above.

The crucial point is that this inverse procedure can
generalized to a uniformly anisotropic medium. Thus it c
be applied to superpositions of plane waves representing
lutions of the Maxwell’s equations in the uniformly anis
tropic layer, yielding expressions for the modes used in
generalizedT-matrix ansatz~22!. In the following subsection
we perform this generalization.

2. Wave functions in an anisotropic medium

We start with the expansion~35!, and use it to derive
formulas for generalized spherical harmonics in the an
tropic medium. The starting point is the well known res
for plane waves@23–26#:

E5 K eire( k̂• r̂ )Ex~ k̂!Fex~ k̂!1
u sinuk

11u
ẑG

1eir ( k̂• r̂ )Ey~ k̂! ey~ k̂!L
k̂

, ~36a!

H5
n

m
^eire( k̂• r̂ )ne

21Ex~ k̂!ey~ k̂!2eir( k̂• r̂ )Ey~ k̂!ex~ k̂!& k̂ ,

~36b!

wherene
2[ne

2(uk)5(11u)/(11u cos2uk) andre[ne(uk)r.
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We now apply the procedure described at the end of
preceding section to the plane wave packets~36!. This gives
a representation of the electromagnetic field in the form
the generalizedT-matrix ansatz~22!. Now, however, the
modes no longer take the form~23!, but rather the modified
form:

Pjm
(m)~r, r̂ !5g j K D jm

(y) * eire( k̂• r̂ )Fex~ k̂!1
u sinuk

11u
ẑG

2 iD jm
(x) * eir( k̂• r̂ )ey~ k̂!L

k̂

, ~37a!

Pjm
(e)~r, r̂ !5g j K iD jm

(x) * eire( k̂• r̂ )Fex~ k̂!1
u sinuk

11u
ẑG

1D jm
(y) * eir( k̂• r̂ ) ey~ k̂!L

k̂

, ~37b!

Qjm
(m)~r, r̂ !5g j^2 iD jm

(x) * eire( k̂• r̂ )ne
21ey~ k̂!

1D jm
(y) * eir ( k̂• r̂ ) ex~ k̂!& k̂ , ~37c!

Qjm
(e)~r, r̂ !5g j^D jm

(y) * eire( k̂• r̂ )ne
21ey~ k̂!

1 iD jm
(y) * eir ( k̂• r̂ )ex~ k̂!& k̂ , ~37d!

whereD jm
(x,y) * [D jm

(x,y) * ( k̂).
Typically, solving a scattering problem for a spherical p

ticle requires modes to be expressed in terms of ve
spherical harmonics. It thus turns out to be useful to write
wave functions~37! as expansions over vector spherical h
monics:

Pjm
(a)5(

b
(

j 8>umu
pj 8 j ; m

(b, a)
~r!Y j 8m

(b)
~ r̂ !, ~38a!

Qjm
(a)5(

b
(

j 8>umu
qj 8 j ; m

(b, a)
~r!Y j 8m

(b)
~ r̂ !, ~38b!

whereaP$m,e%, bP$m,e,o%, and

pj 8 j ; m
(b, a)

~r!5^Y j 8m
(b) * ~ r̂ !•Pjm

(a)~r, r̂ !& r̂ ,

qj 8 j ; m
(b, a)

~r!5^Y j 8m
(b) * ~ r̂ !•Qjm

(a)~r, r̂ !& r̂ . ~39!

Explicit formulas for the coefficient functions enterin
Eqs. ~38b! are given in Appendix B together with some r
lated comments. Evaluating these coefficients involves co
puting some products of Bessel spherical function a
Wigner D functions and integrating these expressions o
uk . Their numerical evaluation is relatively easy.

The coefficients withj Þ j 8 describe angular momentum
mixing. It can be shown that these terms go to zero in
absence of anisotropy, whenu50 andne51.

The modes introduced in this subsection can be use
derive expansions for incident plane wave in the anisotro
medium@18#. In an isotropic material the corresponding e
9-8
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pansions are given by Eqs.~5! and~8!. In a uniformly aniso-
tropic medium these expansions take an exactly analog
form:

Ejm
( inc)5a jm

( inc) Pjm
(m)2

m

n
ã jm

( inc) Pjm
(e) ,

H jm
( inc)5ã jm

( inc) Qjm
(m)1

n

m
a jm

( inc) Qjm
(e) . ~40!

These equations can be compared to Eqs.~5!. In the aniso-
tropic case the spherical harmonics~4! are replaced by the
‘‘quasispherical’’ modes~37!.

B. T matrix: uniform anisotropy

In Sec. IV A, computing the elements ofT matrix for a
radially anisotropic layer required the solution of a set
equations resulting from the boundary conditions~25!. The
only difference in other cases is that appropriate modes
the electromagnetic field inside the anisotropic layer mus
used. For uniform anisotropy these modes are given by E
~38!. Mathematically, Eq.~26!, which describe the fields in
radially anisotropic layer, is replaced by the relation of t
following form:

S pjm
(m)

qjm
(e)

qjm
(m)

pjm
(e)

D 5 (
j 8>umu

Rj j 8; m~r !S a j 8m

b j 8m

ã j 8m

b̃ j 8m

D . ~41!

The crucial difficulty in this case is that the algebra
structure of the equations is complicated by the presenc
angular momentum mixing. Thus, by contrast with the ra
ally anisotropic layer considered in Sec. IV A, we are no
unable to derive expressions for the elements of theT matrix
in closed form. The solution of this system of equations n
requires numerical analysis.

In our subsequent calculations we put the magnetic p
mittivity equal to the unit and concentrate on the limitin
case of a droplet, i.e., when the radius of the isotropic cor
the scatterer,R2, is negligible (R2→0). This case present
fewer technical difficulties than scattering by the annu
layer. The crucial point is that the normal modes inside
droplet are all regular at the origin, and thus two types
modes that appear in the case of the annulus do not ap
here. This reduces the number of variables in the problem
one half as compared to the scattering by a spherical ann
considered in Ref.@18#.

So, the harmonics inside the droplet are

Ejm5a jm
(c) Pjm

(m)2no
21 ã jm

(c) Pjm
(e) , ~42a!

H jm5ã jm
(c) Qjm

(m)1no a jm
(c) Qjm

(e) , ~42b!

where Pjm
(a)5Pjm

(a)(ro , r̂ ), Qjm
(a)5Qjm

(a)(ro , r̂ ), ro5mokr
5mor, mo[no /n is the optical contrast, andno5Ae'[n1

is the ordinary wave refractive index. The modesPjm
(a) and
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Qjm
(a) have been given by Eqs.~23! for radial anisotropy and

by Eqs.~37! for uniform anisotropy.
The continuity conditions at the outside of the dropletr

5R1, can then be written in matrix notation as follows:

(
j 8>umu

R1
j j 8; mS a j 8m

(c)

ã j 8m
(c) D 5G1

j S a jm
( inc)

ã jm
( inc)D 1G̃1

j S b jm
(sca)

b̃ jm
(sca)D , ~43!

Gj~r !5S j j~r! 0

n@ j j~r!#8 0

0 j j~r!

0 2n21@ j j~r!#8

D , ~44!

whereG̃j is defined by the right-hand side of Eq.~44! with
j j (r) replaced byhj

(1)(r); the index 1 indicates that matri
elements are calculated at the boundary of droplet,r 5R1.

In the case of a radially anisotropic droplet the matrix
the left-hand side of Eq.~43! is diagonal over angular mo
mentum numbers@see Eq.~27!#. When the droplet is uni-
formly anisotropic, the matrixRj j 8; m(r ) is no longer diago-
nal. In this case it takes the form:

Rj j 8; m5S pj j 8; m
(m,m)

2no
21 pj j 8; m

(m,e)

no qj j 8; m
(e,e) qj j 8; m

(e,m)

no qj j 8; m
(m,e) qj j 8; m

(m,m)

pj j 8; m
(e,m)

2no
21 pj j 8; m

(e,e)

D , ~45!

where the coefficients are functions ofro and are given by
Eqs.~B1!–~B8! in Appendix B.

The system~43! can be then simplified by multiplying
both sides by the matrices

i

r2
H j~r!5S @ j j #8 2n21 j j 0 0

0 0 n21 @ j j #8 j j
D ~46!

and H̃ j (r) that can be obtained fromH j (r) by changing
from j j to hj

(1) . Using the known expression for the Wrons
ian of the spherical Bessel functions@21#, we derive a system
equivalent to Eqs.~43! in the following form:

ajm
( inc)5 (

j 8>umu
Bj j 8; mS a j 8m

(c)

ã j 8m
(c) D , ~47a!

bjm
(sca)5 (

j 8>umu
A j j 8; mS a j 8m

(c)

ã j 8m
(c) D , ~47b!

whereA j j 8; m52H1
j
•R1

j j 8; m andBj j 8; m5H̃1
j
•R1

j j 8; m .
From Eq.~47! we can immediately derive an expressio

for the T matrix:

T j j 8; m5@A•B21# j j 8; m . ~48!
9-9
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For radial anisotropy all the matrices on the right-hand si
of Eqs. ~47! are diagonal. So, it is easy to write down th
result for theT matrix T j j 8; m5d j j 8T j :

Tj
1152

@ j j~ro!#1@ j j~r!#182mo@ j j~ro!#18@ j j~r!#1

@ j j~ro!#1@hj
(1)~r!#182mo@ j j~ro!#18 @hj

(1)~r!#1

,

~49a!

Tj
2252

mo@ j j̃ ~ro!#1@ j j~r!#182@ j j̃ ~ro!#18@ j j~r!#1

mo @ j j̃ ~ro!#1@hj
(1)~r!#182@ j j̃ ~ro!#18@hj

(1)~r!#1

.

~49b!

These formulas bear close resemblance to the well kn
Mie expressions@17#.

VI. NUMERICAL RESULTS

From a mathematical point of view, the radial and u
form anisotropies present interesting but contrasting featu
Here we draw the reader’s attention to some of the m
striking of these.

Clearly, the difference in symmetry causes the most c
cial differences in the light scattering. Radially anisotrop
layer presents an isotropic face to the world, to the ext
that the scattering properties are independent of the direc
of the incident wave. Here the scattering material is loca
optically anisotropic, but because of the way that the anis
ropy is arranged, the scatterer itself is spherically symme
and remains a globally optically isotropic object. The res
is that there is no angular momentum mixing and the s
tering efficiency does not depend on the angle of incide
and the polarization of incoming wave.

In the case of uniform anisotropy, this is no longer true.
this case the scattering geometry is shown in Fig. 1~b! and
we shall discuss quantitative results for uniformly anis
tropic droplets later in this section.

A. Radially anisotropic layer and effective isotropic scatterer

We have seen above that the scattering from radially
isotropic layer shares some features of isotropic scatte
although we do have to introduce the new normal mo
structure 22 within the anisotropic layer. It is our purpo
here to show briefly that the anisotropy effects can be imp
tant, even for this relatively simple case.

As an example, we compare scattering by a radially
isotropic layer and an isotropic layer of the same dimensio
chosen in some sense to be the best guess to an equiv
isotropic scatterer. Specifically, we consider scattering b
scatterer with a radially anisotropic layer as discussed in S
II, with the e' within the layer matchinge in the core and
outside the scatterer, and anisotropy coefficientu inside the
layer. The equivalent effective scatterer has the same dim
sions, possesses an isotropic layer of refractive indexneff , so
that eeff is the dielectric constant andmeff5neff /n is the op-
tical contrast. The refractive indexneff is chosen so as to
match scattering efficiencies of the anisotropic layer and
the effective scatterer.
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We compare the angular dependence of the scatterin
and the depolarization factors 21 in the two cases. The
gregate scattering is the same, by definition. But disagg
gated, we get different contributions, both when looking
angles and when looking at polarization shifts. In Fig. 2
compare the angular dependence of the intensities. In
case we have considered, the effective scatterer gives a m
more forward scattering signature, and the relatively t
backward scattering contribution has a very different angu
structure. Likewise, we see from Fig. 3 that the depolari
tion factor ~21! as a function of the scattering angleusca is

FIG. 2. Scattered intensity@see Eq.~20!# versus the scattering
angle atkR251.5,kd54.0, andu150.25 for ~a! effective isotropic
scatterer withmeff'1.051 27 (Qeff50.143 91) and~b! radially an-

isotropic layer,n̂5 r̂ (QMie50.1439). Insert at the upper right co
ner enlarges the backscattering tail.

FIG. 3. Depolarization factor@see Eq.~21!# versus the scattering
angle for both the radially anisotropic layer and its effective isot
pic scatterer at kR251.5,u150.25 and ~a! kd51.0 (meff

'1.045 12,Qeff50.010 724,Qrad50.010 729), ~b! kd54.0 (meff

'1.05 127,Qeff50.143,91,Qrad50.1439).
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also very sensitive to the presence of anisotropy.
Given these relatively large effects for what might

thought of as minor anisotropy, there is every reason to s
pose that the influence of a uniform anisotropy will be ev
more profound.

B. Radially and uniformly anisotropic droplets

In this section we present numerical results for the sc
tering efficiency defined by Eqs.~15! and ~16!. We are pri-
marily interested in anisotropy-induced scattering. In or
to concentrate on this test case, we consider the case w
the refractive indicesn andno are equal. We shall present
more comprehensive analysis of all possible cases, inclu
the results for the angular distribution of the scattered wav
elsewhere. We begin with brief comments on numerical p
cedure and then proceed with the description of the ca
lated dependencies.

It is rather straightforward to perform computations f
radially anisotropic droplets. The expressions for the e
ments ofT matrix are known and given by Eqs.~49a! and
~49b!. We can thus evaluate the scattering efficiency by
plicitly computing the sum in the expression~18!.

For uniformly anisotropic dropletsT matrix can only be
computed numerically by solving the system of equatio
~47! @32#. In this case we have rather strong dependenc
the scattering efficiency on both the angle of inciden
which is the angle between the direction of incidence and
optical axis@see Fig. 1~b!#, and the polarization of the in
coming wave. In particular, when the refractive indices
matched,n5no , it is expected that the scatterer does n
change they component of the incident wave, which simp
transforms into the ordinary wave inside the droplet witho
being affected by the scattering process. The algebraic in
pretation of this fact is that the amplitudes of the scatte
waveb jm; y

(sca) and b̃ jm; y
(sca) are equal to zero and the quantity

interest isQxx , which is the only nonvanishing compone
of the scattering efficiency tensor~16!. However, it is not

FIG. 4. Scattering efficiency of uniformly anisotropic droplet
a function of the angle of incidence~the angle between the inciden
wave and the optical axis! at various values of the anisotropy p
rameter,u5(e i2e')/e' , with kR154.0 andn5no .
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straightforward to see that the system~47! is consistent with
this conclusion. We show this in Appendix C. Some hig
lights of the results are presented below.

The dependence of the scattering efficiency on the an
of incidence is shown in Fig. 4. If the size parameter,kR1, is
not very large, the scattering efficiencyQxx is a monotoni-
cally increasing function of the angle of incidence,u inc , in
the region from 0 to p/2. By symmetry Qxx(u inc)
5Qxx(p/22u inc), and so the scattering efficiency decreas
in the range fromp/2 to p.

In Fig. 5 we show what happens for shorter wavelen
and thus higher values ofkR1. Now, for relatively large val-
ues of the size parameter, the cross-section dependenc
the angle of incidence is no longer monotonic. For examp
at kR1520.0, the angle at which the scattering efficien
Qxx reaches its maximum value is no longer atp/2.

FIG. 5. Dependence of the scattering efficiency on the angle
incidence for uniformly anisotropic droplet at various values of t
size parameter andu50.4. The refractive indicesn and no are
matched.

FIG. 6. Scattering efficiencies of radially and uniformly anis
tropic droplets versus the size parameter atu50.4, u inc5p/2, and
n5no .
9-11
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A. D. KISELEV, V. YU. RESHETNYAK, AND T. J. SLUCKIN PHYSICAL REVIEW E65 056609
Figure 6 shows the scattering efficienciesQxx(p/2) ~for
uniform anisotropy! andQ ~for radial anisotropy! versus the
size parameter. The scattering efficiency of uniformly ani
tropic droplet has a pronounced peak located at aboutkR1
'10.0 and exhibits strongly nonmonotonic behavior.
contrast, the corresponding dependence for the radially
isotropic droplet is monotonically increasing. In this case
first maximum is reached atkR1'20.0, outside the range o
kR1 shown in Fig. 6.

The scattering efficiencies as a function of the anisotro
parameter, 0<u<1, at different values of the size paramet
are plotted in Fig. 7 and Fig. 8 for the cases of radial a
uniform anisotropies, respectively. In both cases an incre
in the size parameter leads to the appearance of peaks in
range ofu. As compared to radially anisotropic scatterers,

FIG. 7. Scattering efficiencies of uniformly anisotropic drople
versus the anisotropy parameter at various values of the size pa
eter foru inc5p/2 andn5no .

FIG. 8. Dependence of the scattering efficiency on the ani
ropy parameter for radially anisotropic droplets at various value
the size parameter andn5no .
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uniformly anisotropic droplets seem to be more sensitive
changes both in the size and in the anisotropy paramete

VII. DISCUSSION AND CONCLUSIONS

In this paper we have developed aT-matrix approach that
can describe light scattering by spherical scatterers cont
ing optically anisotropic material arranged in an annu
layer. We have confined our discussion to the two cas
which we have called, using natural language, radially a
uniformly anisotropic systems. Just as in the related c
when the scatterer itself is anisotropic, but the scattering
terial is optically isotropic, the presence of optical anisotro
affects the algebraic structure that underlies theT matrix
theory.

In the case of the uniform anisotropy the light-scatteri
problem is not exactly soluble. The key point is that theexact
solutions for uniformly anisotropic medium are known a
plane waves, whereas the spherical shape of the particle
quires using some kind of spherical modes.

We have found that, by choosing the appropriate basi
k̂ space, we can define ‘‘quasispherical’’ normal mod
These modes areexact solutionsof Maxwell’s equations and
as such mix different angular momentum. However, in
limit of zero anisotropy, these modes tend to familiar sphe
cal modes. More importantly, these quasispherical mo
turn out to be relatively easily accessible computationally.
order to show this, we have described some of the numer
results calculated using theT-matrix theory presented in thi
paper. In particular, we have studied the scattering efficie
of radially and uniformly anisotropic droplets in which th
ordinary refractive index matches the refractive index of
material surrounding them.

The assumption in which the ordinary refractive index
the droplet matches the isotropic dielectric constant in
surrounding medium is not taken in order to simplify th
numerical treatment. Rather in this paper we wish to stu
the light-scattering properties that can be solely attributed
theanisotropicpart of the dielectric tensor. Thus we have t
anisotropy effects separated out to concentrate on differe
between isotropic and anisotropic optical axis distribution

The graphs plotted in Figs. 6–8 indicate that uniform
anisotropic droplets are more sensitive to changes in
wavelength and anisotropy parameters than are radially
isotropic droplets. Our results are also consistent with res
of previous studies@8,14# that the internal spatial distribution
of the optical axis is a factor that strongly affects light sc
tering from anisotropic scatterers.

The results of this work can be regarded as the first s
towards more comprehensive study of light scattering by
isotropic scatterers. We have demonstrated that theT-matrix
approach developed in this paper can be used in an effic
numerical treatment of the scattering problem. It is thus r
sonable to expect that further progress can be made by
plying this theory to more complex problems.

One such problem is the light-scattering problem for
Faraday-active sphere. This problem has been treated u
perturbation theory in Ref.@27# to explain the origin of mag-
netotransverse light diffusion known as the ‘‘photonic H
effect’’ @28,29#.

m-

t-
f
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LIGHT SCATTERING BY OPTICALLY ANISOTROPIC . . . PHYSICAL REVIEW E65 056609
We now try to place this problem in a more general phy
cal context. We were first motivated by the technologi
problem of describing light transmission through media w
liquid crystalline inclusions, and the inverse problem
which the matrix is liquid crystalline but the scatterers a
isotropic. There is considerable current interest in such
terials for optical applications and displays. The compl
problem of light transmission through such materials
only involves the single scattering processes discussed in
paper, but also more general multiple scattering process

The T-matrix formalism is a natural language with
which to discuss such problems. Beginning with single sc
tering theories of the type discussed in this paper, one ca
principle construct an effective medium theory using, for e
ample, the coherent potential approximation~CPA! or coated
CPA @30,31#. These theories determine effective optical ch
acteristics of the medium from the condition that the scat
ing cross section is minimal or equal to zero on avera
Since this requires averaging over director orientations,
important to use basis functions with well defined transf
mation properties under rotations.
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APPENDIX A: VECTOR SPHERICAL HARMONICS AND
RAYLEIGH EXPANSIONS FOR VECTOR PLANE

WAVES

In this appendix we introduce notations and definitio
used throughout the paper. In addition, we express the ve
spherical harmonics in terms of WignerD functions and de-
duce Rayleigh expansions for vector plane waves.

Let us define the vectors

e61~ r̂ !57~q̂6 i ŵ!/A2[7@ex~ r̂ !6 i ey~ r̂ !#/A2,

e0~ r̂ ![ r̂ , ~A1!

where ŵ5(2sinf,cosf,0), q̂5(cosu cosf,cosu sinf,
2sinu) are the unit vectors tangential to the sphere;f andu

are Euler angles of the unit vectorr̂ . These vectors can b
expressed in terms of the vectors of spherical basis,e0[ ẑ,
e6157( x̂6 i ŷ)/A2, (x̂, ŷ, andẑ are the unit vectors directe
along the corresponding coordinate axes! as follows:

en~ r̂ !5 (
m521

1

Dmn
1 ~ r̂ !em , ~A2!

whereDmn
j ( r̂ )[Dmn

j (f,u)5e2 imf dmn
j (u) is the WignerD

function @20,22#.
The vector spherical functionsY jm

(a) from Eqs.~2! are ex-
pressed in terms of the vector spherical harmonicsY l jm @20#
defined by
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Cm2n n m
l 1 j Yl m2n ^ en , ~A3!

where Ylm5A(2l 11)/(4p)Dm 0
l * is the spherical function

@21# andCm2n nm
j 1d 1 j denotes the Clebsch-Gordon~Wigner! co-

efficient,

Y jm
(m)5Y j j m , ~A4a!

Y jm
(e)5sjY j 11 j m1cjY j 21 jm , ~A4b!

Y jm
(o)52cjY j 11 jm1sjY j 21 jm , ~A4c!

sj[F j

2 j 11G1/2

, cj[F j 11

2 j 11G1/2

.

Eqs.~A2!, ~A3!, and the equality@20#

Ck1k2k
j 1 j 2 j Dmk

j 5 (
m1m2

Cm1m2m
j 1 j 2 j Dm1k1

j 1 Dm2k2

j 2 ~A5!

give

@Y l jm* ~ r̂ !•en~ r̂ !#5NjCn
l j Dmn

j ~ r̂ !, ~A6!

where Nj5A(2 j 11)/4p and Cn
l j [@(2l 11)/(2j

11)#1/2C0 n n
l 1 j , so that the nonvanishing values ofCn

l j are

A2 Cn
j j 52n, A2 C61

j 21 j52C0
j 11 j5cj ,

A2 C61
j 11 j5C0

j 21 j5sj . ~A7!

From Eqs.~A4!, ~A6!, and ~A7! we express the vecto
spherical harmonics in terms of the WignerD functions as
follows:

Y jm
(e,m)~ r̂ !5Nj$Dm,21

j * ~ r̂ !e21~ r̂ !6Dm,1
j * ~ r̂ !e11~ r̂ !%/A2,

~A8a!

Y jm
(o)~ r̂ !5Nj Dm,0

j * ~ r̂ !e0~ r̂ !. ~A8b!

Note that theD functions meet the following orthogona
ity relations@20,22#:

^Dmn
j * ~ r̂ !Dm8n

j 8 ~ r̂ !& r̂5
4p

2 j 11
d j j 8dmm8 , ~A9!

where^ f & r̂[*0
2pdf*0

psinudu f. The orthogonality condition
~A9! and Eqs.~A8a! and ~A8b! show that a set of vecto
spherical harmonics is orthonormal:

^Y jm
(a) * ~ r̂ !•Y j 8m8

(b)
~ r̂ !& r̂5dab d j j 8 dmm8 . ~A10!

We can now comment on the vector version of the w
known Rayleigh expansion~see, for example, Ref.@12#!:

eir( k̂• r̂ )54p(
l 50

`

(
m52 l

l

i l j l~r! Ylm~ r̂ !Ylm* ~ k̂!. ~A11!
9-13
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Let us consider a plane wave with the wave vectork
[kk̂ and the polarization vectorE defined by its compo-
nents,En , in the basisen( k̂) @see Eq.~A2!#.

From Eq.~A11!, definition of the vector spherical func
tions ~A4!, and the equality~A5! it is not difficult to derive
the following relation:

en~ k̂!ei (k•r )5(
j ,m

@2p~2 j 11!#1/2Dmn
j ~ k̂!

3F(
l

i l j l~r!Cn
l j Y l jm~ r̂ !G , ~A12!

whereDmn
j ( k̂)[Dmn

j (fk ,uk), Cn
l j is defined in Eq.~A7! and

fk , uk are the azimuthal and polar angles of the unit vec
k̂. The sum in square brackets on the right-hand side of
~A12! can be simplified by using Eq.~A7! and the recursion
relations for spherical Bessel functions@21#. The final result
for transverse waves can be written in the following form

ex~ k̂!exp~ i k•r !5(
j ,m

a j@D jm
(y)~ k̂!M jm

(m)~r, r̂ !

2 iD jm
(x)~ k̂!M jm

(e)~r, r̂ !#, ~A13a!

ey~ k̂!exp~ i k•r !5(
j ,m

a j@ iD jm
(x)~ k̂!M jm

(m)~r, r̂ !

1D jm
(y)~ k̂!M jm

(e)~r, r̂ !#, ~A13b!

wherea j[ i j@p(2 j 11)#1/2, the modesM jm
(m) , M jm

(e) are de-
fined by Eq.~4a! and the functionsD jm

(x) , D jm
(y) are expressed

in terms of WignerD functions in Eq.~32!.
In conclusion, we shall write the formulas for the matr

elements of the plane wave with polarization vector direc
along thez axis: ^Y jm

(a) * • ẑexp(i k•r )& r̂ . The result is as fol-
lows:

^Y jm
(m) * • ẑexp~ i k•r !& r̂

5 i j@4p~2 j 11!#1/2Cm 0 m
j 1 j Dm0

j ~ k̂! j j~r!,

~A14a!

^Y jm
(e) * • ẑexp~ i k•r !& r̂

5 i j 11@4p#1/2@~2 j 13!1/2sjCm 0 m
j 11 1 j Dm0

j 11~ k̂! j j 11~r!

2~2 j 21!1/2cjCm 0 m
j 21 1 jDm0

j 21~ k̂! j j 21~r!#, ~A14b!

^Y jm
(o) * • ẑexp~ i k•r !& r̂

5 i j 11@4p#1/2@~2 j 13!1/2cjCm 0 m
j 11 1 jDm0

j 11~ k̂! j j 11~r!

1~2 j 21!1/2sjCm 0 m
j 21 1 jDm0

j 21~ k̂! j j 21~r!#. ~A14c!
05660
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APPENDIX B: COEFFICIENT FUNCTIONS

By definition, the coefficient functions that enter the e
pansions~38! are the matrix elements~39!. In order to de-
duce the corresponding formulas we need to substitute
expansions for plane waves Eqs.~A13! into Eqs. ~37! and
use the matrix elements for the plane wave polarized al
the z axis given by Eqs.~A14a!–~A14c!.

The resulting expressions for the matrix elements that c
respond to transverse components of the wave functions~37!
are

pj j 8;m
(m,m)

~r!5Nj j 8^dj 8 j ;m
(y;y) j j~re!1dj 8 j ;m

(x;x) j j~r!&uk
1Dpj j 8;m

(m,m)
~r!,
~B1!

pj j 8;m
(m,e)

~r!5 i N j j 8^dj 8 j ;m
(x;y) j j~re!1dj 8 j ;m

(y;x) j j~r!&uk
1Dpj j 8;m

(m,e)
~r!,
~B2!

pj j 8;m
(e,m)

~r!52 i N j j 8^dj 8 j ;m
(y;x) D j j~re!1dj 8 j ;m

(x;y) D j j~r!&uk

1Dpj j 8;m
(m,e)

~r!, ~B3!

pj j 8;m
(e,e)

~r!5Nj j 8^dj 8 j ;m
(x;x) D j j~re!1dj 8 j ;m

(y;y) D j j~r!&uk

1Dpj j 8;m
(e,e)

~r!, ~B4!

qj j 8;m
(m,m)

~r!5Nj j 8^dj 8 j ;m
(x;x) j j~re!ne

211dj 8 j ;m
(y;y) j j~r!&uk

,
~B5!

qj j 8;m
(m,e)

~r!5 i N j j 8^dj 8 j ;m
(y;x) j j~re!ne

211dj 8 j ;m
(x;y) j j~r!&uk

,
~B6!

qj j 8;m
(e,m)

~r!52 i N j j 8^dj 8 j ;m
(x;y) D j j~re!ne

211dj 8 j ;m
(y;x) D j j~r!&uk

,
~B7!

qj j 8;m
(e,e)

~r!5 i N j j 8^dj 8 j ;m
(y;y) D j j~re!ne

211dj 8 j ;m
(x;x) D j j~r!&uk

,
~B8!

where Nj j 8[ i j 82 j /8@(2 j 11)(2j 811)#1/2 and dj j 8;m
(a;b)

[djm
(a)(uk)dj 8m

(b) (uk), a,bP$x,y,z%. The terms
Dpj j 8;m

(a,b)(r) are given by

Dpj j 8;m
(m,m)

~r!5Nj j 8

2m

Aj ~ j 11!
r j j 8;m

(z,x)
~r!, ~B9!

Dpj j 8;m
(m,e)

~r!5Nj j 8

2m

Aj ~ j 11!
r j j 8;m

(z,y)
~r!, ~B10!
9-14



of
e

or
ry
in
io
th
rs

in
he

fi-

and
s of

s of
of

the
by

le-

s

LIGHT SCATTERING BY OPTICALLY ANISOTROPIC . . . PHYSICAL REVIEW E65 056609
Dpj j 8;m
(e,m)

~r!5Nj j 8

22 i

2 j 11
$$ j @~ j 11!22m2#/~ j 11!%1/2

3r j 11 j 8;m
(z,y)

~r!2@~ j 11!~ j 22m2!/ j #1/2

3r j 21 j 8;m
(z,y)

~r!%, ~B11!

Dpj j 8;m
(e,e)

~r!5Nj j 8

2

2 j 11
$$ j @~ j 11!22m2#/~ j 11!%1/2

3r j 11 j 8;m
(z,x)

~r!2@~ j 11!~ j 22m2!/ j #1/2

3r j 21 j 8;m
(z,x)

~r!%, ~B12!

where

r j j 8;m
(z,a)

~r!5
u

u11
^dj 8 j ;m

(a;z)
~uk! j j~re!sinuk&uk

. ~B13!

Expressions forp̃ j j 8;m
(a,b)(r) andq̃ j j 8;m

(a,b)(r) can be derived from
Eqs. ~B1!–~B13! by replacing spherical Bessel functions
the first kind j j (x) with spherical Bessel functions of th
third kind hj

(1)(x).
Using the orthogonality condition~A9! it can be shown

that the coefficient functionspj j 8;m
(a,b) andqj j 8;m

(a,b) are diagonal,
}dabd j j 8 , in the limit of weak anisotropy,u→0.

APPENDIX C

In this appendix we show mathematically, using our f
malism, the physically obvious result that if the ordina
refractive index of a droplet matches that of the scatter
medium, then there will be no scattering of the polarizat
component out of the plane of the incident wave and
uniform anisotropy in the droplet. In order to do this, we fi
extend algebraic relations that follow from Eqs.~40!. These
equations give the expansion of plane wave propagating
uniformly anisotropic medium. We can rewrite them for t
plane wave inside the droplet:

(
j 8m8

@a j 8m8
( inc)Pj 8m8

(m)
~ro , r̂ !2no

21ã j 8m8
( inc)Pj 8m8

(e)
~ro , r̂ !#

5exp~ irek̂ inc• r̂ !Ex~ k̂ inc!Fex~ k̂ inc!1
u sinu inc

11u
ẑG

1exp~ irok̂ inc• r̂ !Ey~ k̂ inc!ey~ k̂ inc!, ~C1!

(
j 8m8

@ã j 8m8
( inc)Qj 8m8

(m)
~ro , r̂ !1noa j 8m8

( inc)Qj 8m8
(e)

~ro , r̂ !#

5no@exp~ irek̂ inc• r̂ !me
21Ex~ k̂ inc!ey~ k̂ inc!

2exp~ irok̂ inc• r̂ !Ey~ k̂ inc!ex~ k̂ inc!#, ~C2!

whereme5A(11u)/(11u cos2uinc) andre5mero . The co-
efficientsa jm

( inc) andã jm
( inc) are defined by Eqs.~8! where the

factor m/n is changed to 1/no .
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We can now combine the relations that come from de
nitions of the coefficient functions@see Eq.~39!#

(
j 8>umu

@pj j 8;m
(a,m)

~ro!a j 8m
( inc)

2no
21pj j 8;m

(a,e)
~ro!ã j 8m

( inc)
#

5K Y jm
(a) * ~ r̂ !• (

j 8m8
@a j 8m8

( inc)Pj 8m8
(m)

~ro , r̂ !

2no
21ã j 8m8

( inc)Pj 8m8
(e)

~ro , r̂ !#L
r̂

, ~C3!

(
j 8>umu

@noqj j 8;m
(a,e)

~ro!a j 8m
( inc)

1qj j 8;m
(a,m)

~ro!ã j 8m
( inc)

#

5K Y jm
(a) * ~ r̂ !• (

j 8m8
@ã j 8m8

( inc)Qj 8m8
(m)

~ro , r̂ !

1noa j 8m8
( inc)Qj 8m8

(e)
~ro , r̂ !#L

r̂

, aP$m,e%, ~C4!

with the relations~C1!, and ~C2! to evaluate the left-hand
side of the system ~43! provided that $a jm

(c) ,ã jm
(c)%

5$a jm
( inc) ,ã jm

( inc)%.
To this end, we can use Eq.~45! to write down the sum on

the left-hand side of Eq.~43! in the following form:

(
j 8>umu

Rj j 8;m~r !S a j 8m
( inc)

ã j 8m
( inc)D

5 (
j 8>umu S pj j 8;m

(m,m)
~ro!a j 8m

( inc)
2no

21pj j 8;m
(m,e)

~ro!ã j 8m
( inc)

no qj j 8;m
(e,e)

~ro!a j 8m
( inc)

1qj j 8;m
(e,m)

~ro!ã j 8m
( inc)

no qj j 8;m
(m,e)

~ro!a j 8m
( inc)

1qj j 8;m
(m,m)

~ro!ã j 8m
( inc)

pj j 8;m
(e,m)

~ro!a j 8m
( inc)

2no
21pj j 8;m

(e,e)
~ro!ã j 8m

( inc)

D .

~C5!

It is seen that the elements of the column on the right-h
side of this equation are the sums from the left-hand side
Eqs.~C3! and ~C4!. On the other hand, from Eqs.~C1! and
~C2!, the square bracketed sums on the right-hand side
Eqs.~C3! and~C4! are the plane waves. So, the elements
the column~C5! can be evaluated as scalar products of
vector spherical functions and the vector plane waves
using Eqs.~A13! and ~A14! of Appendix A.

We can now apply this procedure to calculate the e
ments of the column~C5! for the ordinary wave with

$a jm
( inc) ,ã jm

( inc)%5$a jm;y
( inc) ,ã jm;y

( inc)%. From Eqs. ~8! we have

Ex( k̂ inc)50 andEy( k̂ inc)51 in this case. The final result i
9-15



hen

A. D. KISELEV, V. YU. RESHETNYAK, AND T. J. SLUCKIN PHYSICAL REVIEW E65 056609
(
j 8>umu

Rj j 8;m~r !S a j 8m;y
( inc)

ã j 8m;y
( inc) D 5a jm;y

( inc)S j j~ro!

no@ j j~ro!#8

0

0

D
1no

21ã jm;y
( inc)S 0

0

noj j~ro!

2@ j j~ro!#8

D .

~C6!

When no5n ~and r5ro), after multiplying Eq.~C6! by
the matrices~46!, we have

(
j 8>umu

Bj j 8;mS a j 8m;y
( inc)

ã j 8m;y
( inc) D 5S a jm;y

( inc)

n21ã jm;y
( inc)D ,
r-
rtu

c

e

.

re
-

t.

f

nt

05660
(
j 8>umu

A j j 8;mS a j 8m;y
( inc)

ã j 8m;y
( inc) D 5S 0

0D . ~C7!

From these equations we immediately conclude that, w

$a jm
( inc) ,ã jm

( inc)%5$a jm;y
( inc) ,ã jm;y

( inc)% and n5no , the solution of
the system~47! is given by

a jm
(c)5a jm;y

( inc) , ã jm
(c)5ã jm;y

( inc) ,

b jm
(sca)[b jm;y

(sca)5b̃ jm
(sca)[b̃ jm;y

(sca)50. ~C8!

So, the amplitudes of scattered waveb jm; y
(sca) andb̃ jm;y

(sca) vanish
at n5no .
nt

.
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